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Abstract 

Climate warming across the circumpolar north has driven rapid shifts in vegetation productivity 

and structure, altering the community composition and function of tundra ecosystems. In my 

MSc thesis, I examined the biophysical factors mediating the effects of climate on vegetation 

dynamics, and assessed the impact of data type on models of vegetation change. In my first data 

chapter, I combined field sampling of soils and vegetation and random forests modelling to 

identify the determinants of spatial heterogeneity in Enhanced Vegetation Index trends derived 

from the Landsat archive (1984-2016). This analysis showed that over 70% of the Beaufort Delta 

region has exhibited significant increases in vegetation productivity (greening) from 1984 to 

2016. Greening was more common and rapid in lower elevation areas with existing shrub-

dominated land cover on till blanket and glaciofluvial deposits. The influence of surficial 

geology and topography on productivity trends suggests that soil moisture and nutrient 

availability are mediating the impact of climate warming in the low Arctic tundra. In my second 

data chapter, I investigated the response of three tundra shrub species (green alder, dwarf birch, 

and lingonberry) to climate warming using species distribution modelling. In this study, I also 

explored how data type affects model performance and output. This analysis shows that the use 

of pseudo-absence data (a common practice in species distribution modelling) results in 

differences in projected habitat suitability when compared to models parameterized using true 

absence data. Projections of habitat suitability under a climate warming scenario suggest that 

shrubs will respond individualistically, likely in response to physiological and ecological 

differences among species. Overall, my thesis emphasizes the importance of vegetation change at 

a landscape scale and how larger climate modelling efforts must account for landscape-scale 

variation in biophysical variables, individualistic responses at the species-level, and data quality. 
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My findings are relevant to land management in the region and suggest that further research 

continue to explore how vegetation change and rapid shrub expansion will affect tundra 

landscapes, wildlife, and broader carbon and energy exchange in the future.  
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1 Introduction 

1.1 OVERVIEW AND OBJECTIVES 

Air temperatures in the Arctic are increasing at a rate almost three times that of the rest of the 

northern hemisphere (Johannessen and others 2016; Davy and others 2018). This climate 

warming has resulted in changes to permafrost dynamics, soil nutrient levels, fire regimes, 

precipitation patterns, and a wide range of ecological processes within Arctic ecosystems (Post 

and others 2009; Callaghan and others 2011). Increases in vegetation productivity, the 

proliferation of upright shrubs, and species range shifts are all examples of climate change 

impacts with consequences reaching far beyond the Arctic (Pearson and others 2013; Myers-

Smith and others 2015). Climate change is also accelerating the release of carbon stored in 

permafrost soils and increasing surface temperatures through positive feedback loops driven, in 

part, by increasing shrub cover and decreasing snow cover reducing surface albedo (McGuire 

and others 2006; Euskirchen and others 2009; Schaefer and others 2014). It is crucial that we 

develop a detailed understanding of how Arctic ecosystems are responding to climate change 

because the impacts of rapid warming provide an indication of the changes that should be 

anticipated as temperatures increase across the rest of the globe. Climate change is rapidly 

transforming Arctic ecosystems and we must understand what is happening now so we can better 

manage and protect these vital ecosystems for the future. 

Changes to tundra vegetation dynamics (notably, increases in tundra productivity) also bring up 

more immediate concerns for wildlife as well as cultural land use. Shrub proliferation over once 

lichen-dominated tundra causes concern for many species that rely on this resource like the 

prominent Porcupine Caribou herd (Wildlife Management Advisory Council and Aklavik 

Hunters and Trappers Committee 2018). In addition to changes in vegetation communities 
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altering food availability, taller vegetation makes it difficult to move across the land, putting 

some species at risk as it is more difficult to avoid predators (Joly and others 2007). Inuvialuit 

and Gwich’in communities carry out subsistence hunting and trapping on the land, which may 

also be impacted with increased difficulty navigating tall shrubs on foot or motorized all-terrain 

vehicles or snow machines. As a large portion of land-use in this region is associated with 

cultural activities (Tyson and others 2016; Wildlife Management Advisory Council and Aklavik 

Hunters and Trappers Committee 2018; Proverbs and Lantz 2020), landscape changes associated 

with climate warming are of great importance. 

My MSc research looks into the past and forecasts into the future to examine the impacts of 

climate warming on the productivity of tundra vegetation and the distributions of common tundra 

shrubs across the Beaufort Delta region in the western Canadian Arctic. With this research, I 

seek to answer the following questions: 

1) What biophysical drivers are responsible for heterogeneous patterns in observed tundra 

vegetation change in the Beaufort Delta region? 

2) What is the influence of data type (true absences vs. pseudo-absences) on species 

distribution modelling the projections of habitat suitability of three common tundra shrub 

species? 

In Chapter 2, I use trends in a vegetation index derived from satellite imagery to investigate the 

effect of biophysical drivers on spatial patterns in tundra vegetation productivity. Combining 

data from field surveys with random forests models to rank variable importance provides insight 

on how warming is affecting vegetation community composition. In Chapter 3, I explore the 

effect of data type on the performance and habitat suitability projected by species distribution 

models (SDMs) of three tundra shrub species. Specifically, I assess the impact of parameterizing 
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models with true absences or pseudo-absences on the performance of SDMs and evaluate model 

outputs to understand species’ responses to projected climate warming. The remainder of this 

chapter provides background and context to topics that guide my research, but that I do not 

discuss in detail in Chapters 2 or 3.  

1.2 STUDY AREA 

1.2.1 Beaufort Delta Region 

My MSc research focuses on the Beaufort Delta region of the western Canadian Arctic. This 

region stretches across the Yukon North Slope and the Tuktoyaktuk Coastlands of the Northwest 

Territories and includes Banks Island, NWT. Differences between the climate normals of 1981-

2010 and 1951-1980 show that annual mean temperature has increased by 1.6°C and 1.3°C at 

Inuvik, NWT (mainland) and Sachs Harbour, NWT (Banks Island), respectively (Environment 

and Climate Change Canada [ECCC] 2021). Regional temperatures are projected to continue 

rising (Serreze and Barry 2011), with likely impacts to local communities, wildlife, and 

vegetation (Arctic Monitoring and Assessment Programme [AMAP] 2004; Post and others 

2009).  

The Beaufort Delta region is home to Inuvialuit and Gwich’in communities who have stewarded 

the land for many generations (Alunik and Morrison 2003; Vuntut Gwitch'in First Nation and 

Smith 2010). Cultural practices such as fishing, hunting/trapping, and gathering from the land are 

heavily entwined with the regional environment where changes or disturbances to these 

ecosystems directly affect community wellbeing and public health (Parlee and Furgal 2012). In 

addition to climate warming driven by global greenhouse gas emissions, recent studies indicate 

that the cumulative impacts of oil and natural gas exploration, resource extraction, infrastructure 

development, and natural processes (fire, permafrost thaw, etc.) also pose a serious threat to 
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management and conservation initiatives on Inuvialuit (Tyson and others 2016) and Gwich’in 

(Proverbs and Lantz 2020) lands.  

1.2.2 Inuvialuit Settlement Region Land Claim 

Inuvialuit are the Inuit of the western Canadian Arctic in what is now known as the Inuvialuit 

Settlement Region (ISR; Alunik and Morrison 2003). In 1984, the Inuvialuit Final Agreement 

(IFA) was signed establishing the land claim of the Inuvialuit and formalizing the ISR (Indian 

and Northern Affairs Canada [INAC] 1984). The ISR covers approximately 91,000 km2 of land 

in traditional Inuvialuit territory across much of western Northwest Territories and the Yukon 

North Slope (Figure 1.1). The IFA recognized Inuvialuit title to this land area, which surrounds 

six Inuvialuit communities in Northwest Territories: Aklavik, Inuvik, Paulatuk, Sachs Harbour, 

Tuktoyaktuk, and Ulukhaktok (INAC 1984). The IFA also sets out provisions honouring the 

Inuvialuit right to preserve and protect the environment and their cultural lands (INAC 1984). In 

the ISR, Inuvialuit people have the right to hunt and trap while maintaining the rights of other 

indigenous groups to harvest wildlife in the area as well (INAC 1984). The ISR is the home of 

Inuvialuit people and permission is required to conduct research on their land. As such, proper 

documentation and community engagement to pursue this project across the Yukon North Slope 

and Tuktoyaktuk Coastlands was obtained prior to initiating fieldwork (Yukon Scientists and 

Explorers Act Licence [19-45S&E]; Northwest Territories Scientific Research Licence [16520]; 

Inuvialuit Land Access Permit [ILA18TN012]).  
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Figure 1.1. Gwich'in Settlement Area (purple dashed border) and Inuvialuit Settlement Region 

(green ticked border) in northern Yukon and Northwest Territories. Inset map shows the extent 

of the main map as it relates to Canada and Alaska, USA. 

1.2.3 Gwich’in Settlement Region Land Claim 

The Gwich’in are an indigenous people whose traditional territory ranges from northeastern 

Alaska through the northern Yukon and into the Northwest Territories in the Mackenzie Delta 

region (Vuntut Gwitch'in First Nation and Smith 2010). Signed in 1992, the Gwich’in 

Comprehensive Land Claim Agreement (GCLCA) acknowledges Gwich’in rights and title, 

setting out approximately 24,000 km2 in the Yukon and Northwest Territories as the Gwich’in 

Settlement Region (GSR; INAC 1992). The Gwich’in Settlement Area in the Northwest 

Territories (Figure 1.1) encompasses the communities of Aklavik, Fort McPherson, Inuvik, and 
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Tsiigehtchic (INAC 1992). Like the IFA, the GCLCA recognizes Gwich’in land rights and sets 

out the mechanisms guiding land use and harvesting, which are regulated by the Gwich’in Tribal 

Council and Gwich’in Renewable Resources Board (INAC 1992). 

1.3 REMOTE SENSING 

Conducting research in the Arctic can be both expensive and logistically challenging. As such, 

remote sensing is a valuable tool to collect high quality, spatially extensive, and long-term data 

without the need for multiple field excursions. For the purposes of my thesis, this section 

focusses on data from satellite imagery, but there are many other forms of remote sensing used to 

monitor Arctic ecosystems including remotely piloted aircraft systems (RPAS; or drones; see 

Assmann and others 2020), light detection and ranging (LiDAR; Greaves and others 2015), and 

air photos (see Moffat and others 2016). 

1.3.1 Landsat Mission and Best-Available-Pixel Workflow 

Since 2008, scenes from Landsat satellite missions have been available, open access, for use by 

scientists, researchers, and the public (Wulder and others 2012). Data from Landsat satellites 

captured the globe as early as 1972 with the launch of Landsat-1 (Wulder and others 2012). 

Current satellites in orbit (Landsat-7 and Landat-8 missions) are working beyond their design life 

(Wulder and others 2012) with a new mission (Landsat-9) launched in 2021 and expected to be 

functional shortly after (Masek and others 2020). Throughout its history, the Landsat program 

has delivered high resolution (30-metre), analysis-ready imagery with a 16-day repeat cycle 

(Wulder and others 2019) making it valuable to time series analysis across large areas. My thesis 

research uses Landsat data and takes advantage of advances in image processing and the use of 

large-scale composite images to study changes in tundra ecosystems. 
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Access to such data has made it possible to study large areas of Earth in high resolution at 

landscape, regional, and global scales. The Landsat dataset, however, is not perfect. Image 

quality and availability for specific analyses are subject to cloud cover, time of year, viewing 

angle, and other potentially interfering factors such as sensor calibration or the failure of the scan 

line corrector mechanism in Landsat-7 (Gutman and others 2013; White and others 2014). One 

solution developed for creating broad-scale mosaics for time-series is the best-available-pixel 

(BAP) composite imagery method developed by White et al. (2014). This method takes 

advantage of the Landsat mission’s vast image catalogue with many repeats to create gap-free 

composite images using the “best available pixel” based on a number of defined criteria (White 

and others 2014). The annual BAP composite creates a mosaic considering all available pixels 

from a given time period (such as a specific growing season). Each pixel in the composite is 

selected from this group to minimize cloud cover, atmospheric opacity, and cloud shadows, or 

optimize a defined target day-of-year (White and others 2014). 

Subsequently, Hermosilla et al. (2016) developed the Composite2Change method (using annual 

BAP) to create a time series of Landsat imagery covering all of Canada. This analysis used all 

available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) images 

from between 1984 and 2012 using August 1 as the target day of year (Hermosilla and others 

2016). An update to this imagery by Hermosilla et al. (2017) extended the time series to 2016 

and ranked images from TM and the Landsat-8 Operational Land Imager (OLI) higher than the 

ETM+ of Landsat-7 due to the scan line correction failure. This new release also provided gap-

free imagery by filling in missing pixels using a proxy value for surface-reflectance (Hermosilla 

and others 2017). This gap-free, composite mosaic time-series of multispectral Landsat imagery 

is particularly valuable as data to study Canadian landscapes. I use these data in Chapter 2 to 
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map trends in the Enhanced Vegetation Index between 1984 and 2016 in an effort to understand 

drivers of tundra vegetation productivity. 

1.3.2 Vegetation Indices 

Developments in remote sensing have increased the availability and accessibility of broad-scale 

data in remote Arctic ecosystems, revealing landscape and regional patterns in a suite of 

ecological parameters (Laidler and Treitz 2003). The use of high-resolution satellite imagery and 

aerial photography have allowed researchers to study changes in tundra vegetation (Bhatt and 

others 2010), lakes (Kuhn and Butman 2021), permafrost terrain (Pastick and others 2015), snow 

cover (Macander and others 2015), and other sensitive Arctic systems (Laidler and Treitz 2003). 

To study vegetation dynamics, indices such as the Normalized Difference Vegetation Index 

(NDVI) estimate the photosynthetic activity of plants by measuring reflectance in the red and 

near-infrared bands of a satellite image (Tucker 1978). Since chlorophyll absorbs red light while 

reflecting near-infrared light, vegetation indices are able to estimate amounts of plant cover and 

productivity (Pettorelli and others 2005). High reflectance of near-infrared relative to red from 

the ground indicates greater plant cover than a lower ratio (Tucker 1978). NDVI is calculated 

using Equation 1 where NIR is the near-infrared band and RED is the red band of the visible 

spectrum (Tucker 1978). The Enhanced Vegetation Index (EVI) is a variation on NDVI intended 

to account for atmospheric noise and soil reflectance (Gao and others 2000). As a newer index of 

vegetation cover, EVI has some advantages over NDVI in its application to vegetation 

monitoring. Equation 2 for EVI shows the use of the BLUE band of the visible spectrum with 

satellite-specific correction terms (C1, C2, and L) to account for soil (L) and atmospheric/aerosol 

(C1 and C2) influences (Gao and others 2000). It has been shown that EVI is more sensitive to 
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differences in vascular phytomass and net primary productivity (Kushida and others 2015) and to 

variability of soil moisture (Raynolds and Walker 2016). 

Increases in computing power have facilitated the use of larger data sets and an increase in 

ecological model complexity (De'ath 2007; Kruse and others 2018). My MSc research benefit 

from these advances and utilized the national high-performance computing grid maintained by 

Compute Canada (Baldwin 2012). 

1.4 RANDOM FORESTS MACHINE LEARNING ALGORITHM 

Random forests (RF) modelling is an ensemble learning method involving the assembly of many 

classification or regression trees used for predictive modeling (Breiman 2001). The use of 

classification and regression trees (CART) allow researchers to model a single response variable 

using multiple predictors (De'ath and Fabricius 2000). CART splits data using a single predictor 

variable to increase homogeneity of the response groups in the decision tree (De'ath and 

Fabricius 2000). The output of CART is a single decision tree that can be used to predict the 

response given a set of predictor values and is useful in modeling complex, non-linear 

relationships (De'ath and Fabricius 2000; James and others 2013). RF builds off CART analyses 

by using bootstrap aggregation (or bagging) to subset available data (Cutler and others 2007). 

Bagging is a method of random subsampling of the data to create a decision tree where each 

successive decision tree uses a different random subset (with replacement). In RF modelling, a 

random subset of predictor variables are also selected to generate individual trees (Prasad and 

 

𝑁𝐷𝑉𝐼 =
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 

[1] 

 
𝐸𝑉𝐼 = 2.5 ×

𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + (𝐶1 × 𝑅𝐸𝐷) − (𝐶2 × 𝐵𝐿𝑈𝐸) + 𝐿
 [2] 
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others 2006). Using this bagging technique, RF is relatively well-suited to reducing the 

likelihood of model overfitting and is capable of working with very large datasets with many 

predictor variables (Cutler and others 2007). Additionally, the use of bagging and model 

averaging in RF reduces prediction error when compared to CART models by reducing variance 

in the data (De'ath 2007).  

Error in RF models can be determined in a number of ways. The bagging method is unique 

because it makes use of the “out-of-bag” data (data not used to build a given tree) to determine 

prediction error (De'ath 2007). Another method is by cross validation in which data are split into 

training and validation sets prior to model construction and the validation data are used to 

determine the predictive error of the model. Some argue that with a large number of trees grown, 

the out-of-bag error provides a better estimate of error (Prasad and others 2006); however, others 

still use cross validation techniques (James and others 2013). 

As a non-parametric method, RF does not require any assumptions regarding the distribution of 

data, does not assume linearity (Cutler and others 2007), and provides many benefits over other 

modelling approaches. The RF method is useful for more than just its predictive capabilities. The 

mean decrease in model accuracy upon removal of a given variable calculated using out-of-bag 

data also provides a measure of variable importance (Cutler and others 2007). RF models are not 

without limitation, and one critical drawback is that RF, as a machine learning technique, is 

essentially a “black box” that we cannot open. Users cannot be sure exactly what the trees look 

like and there are no formula outputs or diagrams to draw mechanistic conclusions (Cutler and 

others 2007). Furthermore, the prediction capability of this method is weak beyond the extent of 

the data you use to train the model. While not always a concern, as discussed by Evans et al. 

(2009), imbalance in sample data poses a problem that must be accounted for through techniques 
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to minimize oversampling any particular response. Finally, RF is not a tool for statistical 

inference or hypothesis testing as there are no p-values or confidence intervals involved (Cutler 

and others 2007). 

In Chapter 2 of this thesis, I implement both classification and regression RF algorithms to 

understand drivers of change in tundra vegetation between 1984 and 2016. Using classified 

(classification RF) or raw (regression RF) EVI trends over this period as the response, I am able 

to rank biophysical drivers as they relate to areas of significant increases in tundra productivity 

(significant tundra greening). In Chapter 3, I used RF as one of five algorithms implemented as 

part of the ensemble species distribution modelling of three tundra shrub species. The 

classification RF used in this context has a binary presence/absence response used to predict 

habitat suitability across the Beaufort Delta region. 

1.5 ECOLOGICAL THEORY IN SPECIES DISTRIBUTION MODELING 

1.5.1 Scale  

The concept of spatial scale and the impact of spatial scale on ecological research has long been 

an area of study (Wiens 1989; Levin 1992). Ecological variability varies across both spatial and 

temporal scales making conclusions regarding patterns and drivers of variation particularly 

difficult (Levin 1992). In species distribution modeling (or habitat suitability modeling), grain 

size and extent both have an important influence on model construction and interpretation. Grain 

size refers to the spatial resolution of the data. Larger grain sizes represent coarser interpretations 

of the earth’s surface whereas smaller grain sizes provide greater detail but require higher quality 

sensors and more physical data storage. Spatial extent refers to the total area of study. Larger 

study areas have greater extents and encompass greater variability in environmental and climate 

predictors but may miss nuances experienced by specialist species or local adaptations by 
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ecotypes (Trivedi and others 2008; Vale and others 2014). The combination of grain size and 

extent are what define the scale of study. The relative influence of biotic and abiotic drivers of 

ecological responses also differ across scales (Pearson and Dawson 2003). Climate is generally 

the dominant driver when considered across large areas, but at finer scales, soil conditions and 

microclimate can drive heterogeneity in ecological responses (Austin and Van Niel 2011). Even 

with the advancement of remote sensing technologies, some products may be limited in their 

spatial resolution, which influences how appropriate they are for use in species distribution 

modeling at finer scales (Elith and Leathwick 2009).  

1.5.2 Niche Theory  

Species distribution modelling attempts to quantify a species’ niche (Hirzel and Le Lay 2008). A 

species’ niche can be broadly defined as the specific biotic and abiotic requirements for needed 

for a species to survive that are influenced by climate, resource availability, biological 

competition, or any number of other environmental or biological factors. This familiar 

framework is defined by Hutchinson’s niche concept (Hutchinson 1957), itself building off of 

previous descriptions by other ecologists (see Chase and Leibold 2003; Pironon and others 

2018). Additional factors such as competition, herbivory, allelopathy, and disease can also limit 

the actual distribution of a given species, often referred to as the realized niche of a species. The 

fundamental niche covers the entire spectrum of suitable conditions whereas the realized niche 

describes the conditions a species actually occupies. Since species distribution models are built 

from observations in the field, these models are only capable of quantifying the spatial extent of 

the realized niche (Austin and others 1990; Pearson and Dawson 2003). However, considering 

the resolution of modeled predictors, Araújo & Guisan (2006) propose that coarser resolution 

data may not be able to model negative interactions such as competitive exclusion, thus giving a 
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better picture of the fundamental niche. Complications like this, and others such as dispersal 

limitations, make applying niche concepts to species distribution modeling a complex task with 

no clear solution. Understanding and accounting for limitations in correlative ecological niche 

modeling in the form of species distribution models is still an active area of research. As such, it 

is important to understand what information models are capable of providing and to be mindful 

in the interpretation of results. The SDMs created in Chapter 3 of this thesis do not account for 

dispersal mechanisms or biological interactions. Instead, I focus on the role of environmental and 

climate variables that describe the realized niche of tundra shrubs in the Beaufort Delta region 

and how projected changes in climate patterns will affect habitat suitability across the landscape. 
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2.1 INTRODUCTION 

Increasing temperatures in the Arctic (AMAP 2004; Serreze and others 2009; Johannessen and 

others 2016; Davy and others 2018) are driving rapid changes to the structure and composition of 

tundra vegetation. Plot-based and fine-scale remote sensing studies have documented shifts in 

the dominant vegetation, with deciduous shrubs now proliferating in what was once lichen- and 

graminoid-dominated tundra (Elmendorf and others 2012; Ropars and Boudreau 2012; Lantz and 

others 2013; Moffat and others 2016; Travers‐Smith and Lantz 2020). Vegetation productivity 

can also be measured at broad scales using multispectral satellite vegetation indices (Gao and 

others 2000) such as the Enhanced Vegetation Index (EVI) and the Normalized Difference 

Vegetation Index (NDVI). Changes in these indices have been observed across the Arctic with 

increasing productivity referred to as ‘tundra greening’ (Jia and others 2003; Bhatt and others 

2010; Epstein and others 2012). Continental and pan-Arctic scale changes in vegetation 

productivity have generally been attributed to rapid temperature increases at high latitudes (Jia 

and others 2003; Bhatt and others 2010; Miller and Smith 2012; Fraser and others 2014a; Berner 

and others 2020). Plot-scale warming experiments and repeated observation also provide 

evidence that vegetation change has been caused by increasing temperature (Chapin and others 

1995; Walker and others 2006; Hudson and Henry 2009; Elmendorf and others 2012).  

Although widespread, observed increases in Arctic vegetation productivity have not been 

uniform, with some regions exhibiting stable or decreasing productivity (Jia and others 2006; 

Bhatt and others 2010; Epstein and others 2012; Ju and Masek 2016). Recent evidence suggests 

that variation in the response of tundra vegetation is related to both broad-scale (Wang and Friedl 

2019; Berner and others 2020; Campbell and others 2021; Chen and others 2021) and fine-scale 

(Moffat and others 2016; Myers‐Smith and others 2019; Bjorkman and others 2020) variation in 
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biophysical factors, but few studies have explored linkages between these scales. In their 

conceptual model, Pearson and Dawson (2003) suggest that climate variables (long-term 

temperature and precipitation trends) have greater influence at a global and continental scales, 

whereas biophysical variables (such as soil moisture, surface topography and soil conditions, 

land cover, and land use) are likely to influence processes at landscape or local scales. 

At the landscape-scale, research suggests that variability in soil moisture, land cover type, and 

landscape position are responsible for the heterogeneous response of Arctic vegetation 

productivity (Ropars and Boudreau 2012; Tape and others 2012; Martin and others 2017; 

Bonney and others 2018; Campbell and others 2021). In this study, we explore the environmental 

factors driving heterogeneity in vegetation productivity trends across the Beaufort Delta region 

by combining plot-based fieldwork with an analysis of the Landsat satellite archive (Wulder and 

others 2019). We use a random forests (RF) ensemble decision tree algorithm to determine the 

environmental factors influencing spatial heterogeneity in tundra productivity trends in the 

Beaufort Delta region. Ultimately, we seek to understand how variation in environmental 

conditions influences the spatial patterns of vegetation productivity at a landscape-scale. An 

improved understanding of factors mediating tundra vegetation change will contribute to local 

and regional planning and inform earth system models that include feedbacks between vegetation 

growth and ecological processes such as permafrost, albedo, and evapotranspiration (Verseghy 

1991; Verseghy and others 1993; Verseghy 2000; Bonan and others 2003; Quillet and others 

2010). 

2.2 STUDY AREA  

This study focuses on the tundra ecosystems across the Yukon North Slope (0.54 MHa) and 

Tuktoyaktuk Coastlands (2.92 MHa). These Low Arctic ecosystems are located in the Beaufort 
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Delta region of the western Canadian Arctic (Figure 2.1a). This coastal region borders the 

Beaufort Sea to the north and is bounded by the northern edge of the subarctic forest to the south 

(Timoney and others 1992). Both regions are located within the Inuvialuit Settlement Region and 

are significant to the communities of Tuktoyaktuk (population of 900), Inuvik (population of 

3200), and Aklavik (population of 600), who use these lands for hunting, fishing, trapping, 

traditional harvesting of plants, and other cultural practices (Alunik and Morrison 2003; Murray 

and others 2005; Tyson and others 2016).  

The Yukon North Slope extends from the foothills of the Richardson Mountains to the coast of 

the Beaufort Sea. Areas at high elevation drain to the Beaufort via the deeply incised canyons of 

the Babbage, Blow, and Big Fish Rivers among others (Rampton 1982; Yukon Ecoregions 

Working Group [YEWG] 2004). Rolling hills and hummocky terrain dominate the eastern 

portion of the Yukon North Slope that ends in a steep escarpment at the Mackenzie Delta 

(Rampton 1982). Average annual temperature between 1984 and 2016 at Shingle Point was -9.2 

℃ with an average summer temperature (June through August) of 9.0 ℃ (ECCC 2018b). On 

average, Shingle Point received 254 mm of precipitation annually (ECCC 2018b), about half of 

which fell as rain (Burn and Zhang 2009). The Tuktoyaktuk Coastlands extends from the eastern 

limit of the Mackenzie Delta to Cape Bathurst to the east. This gently rolling landscape is 

scattered with lakes and ponds and is characterized by hummocky terrain in upland areas and 

polygonal terrain and wetlands at lower elevations (Rampton 1988; Ecosystem Classification 

Group [ECG] 2012). The climate at Tuktoyaktuk is similar to Shingle Point, with average annual 

and summer temperatures between 1984 and 2016 of -9.4 ℃ and 8.9 ℃, respectively (ECCC 

2018a). Average total precipitation during this period was 146 mm, about 40% of which fell as 

rain (ECCC 2018a). The Yukon North Slope and Tuktoyaktuk Coastlands are separated by the 
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low-lying alluvial terrain in the Mackenzie Delta ecoregion. This dynamic ecosystem was 

excluded from our study area because much of it is forested and the tundra communities present 

are strongly influenced by hydrological dynamics (Gill 1972, 1973; Pearce 1986; Burn and 

Kokelj 2009).  

The Yukon North Slope hosts a diversity of terrain types including coastal beaches and estuaries, 

low-lying wetlands, upland tussock tundra, and shrub tundra (YEWG 2004; Wang and others 

2019). The upland tundra in the foothills of the Richardson Mountains occurs on well-drained 

soils that support characteristic communities of tall and dwarf shrubs, lichens, graminoids and 

forbs (YEWG 2004). The Tuktoyaktuk Coastlands is largely covered by shrub and tussock 

tundra with wetter areas dominated by sedge and moss tundra (ECG 2012; Moffat and others 

2016). In the southern portion of this region, scattered spruce woodlands are located along 

sheltered creeks and other low-lying areas (Lantz and others 2019). 

Both the Yukon North Slope and Tuktoyaktuk Coastlands are underlain by continuous 

permafrost and are characterized by thermokarst features including polygonal terrain, earth 

hummocks, thaw slumps and pingos (Rampton 1982, 1988; YEWG 2004; ECG 2012). The 

Laurentide Ice Sheet covered most of this region during the Wisconsinan glaciation with the 

exception of land south and west of the Richardson Mountains and the northern tip of the 

Tuktoyaktuk Peninsula and Cape Bathurst (Jessop 1971; Hughes and others 1981; Duk-Rodkin 

and Hughes 1995; YEWG 2004; ECG 2012). 
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Figure 2.1. A) Study area and site locations from the 2019 field season with inset showing the 

extent the map in the context of northwestern Canada and Alaska, USA. B) Surficial geology 

classes comprising greater than 1% of the study area (Fulton 1989) and C) elevation in metres 

(Porter and others 2018) used in random forests analyses across the study area. 

2.3 METHODS 

To investigate the drivers of vegetation change in the Beaufort Delta region we combined RF 

modelling of regional EVI trends with multivariate analyses of plot-scale field data. We 

classified pixel-based trends in EVI (1984-2016) as: 1) exhibiting significant increases in EVI or 

2) un-trended. We used these binary classes (increasing EVI/un-trended EVI) as response 

variables in a classification RF model to determine the factors facilitating and constraining 

increased productivity. To identify the factors influencing the magnitude of greening, we also 

performed a regression RF model that predicted the slope of significant positive EVI trends. To 
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facilitate site selection for field sampling and multivariate analyses, pixels exhibiting significant 

increases in EVI were further classified as moderate or high magnitude greening.  

2.3.1 EVI Trend Analysis 

To document changes in the productivity of tundra vegetation across the study area, we tracked 

changes in EVI using the Landsat satellite archive (1984-2016). EVI is a modified form of NDVI 

in which the blue band of the visible spectrum and satellite-specific correction terms (C1, C2, and 

L) account for soil (L) and atmospheric/aerosol (C1 and C2) influences (as calculated in Equation 

3; Gao and others 2000).  

𝐸𝑉𝐼 = 2.5 ×
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 +(𝐶1 × 𝑅𝐸𝐷) − (𝐶2 × 𝐵𝐿𝑈𝐸) + 𝐿
  (3) 

We used EVI in this analysis because it is sensitive to differences in vascular plant phytomass 

and vascular net primary productivity (Kushida and others 2015) and it performs well across a 

range of soil moisture conditions (Raynolds and Walker 2016). We obtained the EVI trend 

surface from Chen and others (2021) who generated the trend surface using annual composite 

Landsat images from 1984 to 2016. These images were obtained using the Composite2Change 

method for selecting best-available-pixels from the Landsat archive to produce a gap-free surface 

reflectance raster for each year (Hermosilla and others 2016). The imagery used to produce best-

available-pixel composites were cross-calibrated among Landsat sensors (see: Markham and 

Helder 2012; Hermosilla and others 2016). Composite imagery was used to calculate EVI on a 

pixel basis (30-metre spatial resolution) for each year and a pixel-based, non-parametric Theil-

Sen regression was performed on the resulting time series (Theil 1950; Sen 1968) using the 

EcoGenetics package (Roser and others 2017) in R (R Core Team 2019). The significance of 

pixel-based slopes was assessed using a Mann-Kendall test for monotonic trends (Mann 1945; 
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Kendall 1948) performed using the Kendall package in R (McLeod 2011). In our analysis, we 

used the resulting p-values to determine whether significant change (p < 0.05) had occurred in 

each pixel from 1984 to 2016. 

We also used the raster surface derived from Theil-Sen regression of EVI trends to classify the 

study area into site types exhibiting: 1) high greening, 2) moderate greening, 3) no significant 

change (stable sites), and 4) browning (see histogram: Supplementary Figure 1) for the purpose 

of our field investigation. Areas showing non-significant EVI trends (p > 0.05) were classified as 

stable. Pixels with significant increases in EVI were further classified based on the slope of the 

EVI trend. Pixels with slopes that were within one standard deviation (SD; 1.45 x 10-3 per year) 

of the mean EVI trend (< 2.24 x 10-3 + SD per year) were classified as moderate greening and 

pixels with an increase greater than one standard deviation above the mean EVI trend (> 2.24 x 

10-3 + SD per year) were classified as high greening. Pixels with a significant negative slope 

(decline in EVI over time) were classified as browning. Since browning pixels only accounted 

for 0.63% of pixels in the study area, we did not consider this class as a category in this analysis.  

2.3.2 Random Forests Analysis and Variable Importance 

To identify the biophysical variables that best explain spatial variation in EVI trends, we used 

two RF models (Breiman 2001). RF models are decision-tree based, ensemble machine-learning 

methods involving the assembly of many regression or classification trees using a subset of 

available data to increase predictive capability (Breiman 2001; De'ath 2007). The RF method can 

also be used to determine variable importance by measuring the mean decrease in model 

accuracy upon removal of a given variable (Cutler and others 2007). In our first analysis, we 

used a classification RF to discriminate pixels showing a significant increase in EVI (p < 0.05, 

positive slope) from un-trended pixels (p > 0.05). In a second analysis, we used a regression RF 
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to model the magnitude of the change in EVI (Theil-Sen regression slope) of pixels exhibiting 

significant increases in EVI (p < 0.05, positive slope) using the same suite of biophysical 

variables. We created both models using the randomForests package (Liaw and Wiener 2002) in 

R. Explanatory variables used in each model are presented in Table 2.1. We ran the classification 

RF model using a random selection of 40,000 pixels of each class to ensure balanced sampling. 

For the regression RF, we used a random sample of 1% (66,442 pixels) of all pixels in the study 

area. We ran each model using 1000 trees and calculated the variable importance using the 

importance function (Liaw and Wiener 2002). We assessed the influence of the four variables 

that had the largest impact on model accuracy using partial dependence plots showing the 

marginal effect of a given variable on the modelled parameter while keeping all other variables 

constant (Friedman 2001; Hastie and others 2009). For a classification RF, partial dependence 

plots show the probability of significant greening. The partial dependence plots for a regression 

RF show the predicted magnitude of the slope in the EVI trend. 

2.3.3 Explanatory Variables 

Broad-scale biophysical data used in this study were obtained from a variety of sources (Table 

2.1) and data processing and aggregation were completed using the R statistical software (R Core 

Team 2019). We selected explanatory variables known to effect growth and productivity but 

were not able to directly assess the influence of microclimate because suitable data are not 

available to adequately capture climate variability at such fine scales. A digital elevation model 

(DEM), with 2-metre spatial resolution (Figure 2.1c), was sourced from the Polar Geospatial 

Center’s (PGC) ArcticDEM dataset (Porter and others 2018). We calculated slope, aspect, and 

terrain ruggedness index (TRI) from this DEM using the terrain function from the raster 

package (Hijmans 2020). TRI is the absolute difference between the elevation of a given cell and 
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its surrounding neighbours (Riley and others 1999). The topographic wetness index (TWI) is a 

DEM-driven index of soil moisture in which potential soil moisture availability is calculated 

based on the slope and flow directions of the surrounding landscape (Kopecký and Čížková 

2010). Flat areas surrounded by upslope terrain will have higher TWI values (as moisture will 

tend to accumulate in these areas) compared to steep sloping cells that will have lower values (as 

moisture will tend to run off). TWI was calculated using the upslope.area function from the 

dynatopmodel package (Metcalfe and others 2018). Topographic position index (TPI) is another 

DEM-driven index that defines the relative elevation of a cell based on the mean elevation of 

surrounding cells (De Reu and others 2013). Where TPI is positive, the cell has a higher 

elevation than the mean of the surrounding cells. A negative TPI indicates that the cell has a 

lower elevation than the mean of the surrounding cells. TPI was calculated using the tpi function 

in the spatialEco package (Evans 2020). We calculated solar insolation using the Equation 4 

provided by Roberts and Cooper (1989):  

𝑠𝑜𝑙𝑎𝑟 𝑖𝑛𝑠𝑜𝑙𝑎𝑡𝑖𝑜𝑛 =
1 − cos(𝑎𝑠𝑝𝑒𝑐𝑡 − 30)

2
    (4) 

This index of solar insolation ranges from 0 to 1, with north-northeast facing aspects taking on 

values close to zero, and south-southwest aspects having values closer to 1. Data on land cover 

were obtained from the classification created by Wang and others (2019). This land cover 

classification includes 15 terrain types derived from a RF classification model for Landsat 

surface-reflectance at 30-metre resolution using high-resolution field photos and imagery from 

the NASA ABoVE project to assign land cover classes for each year between 1984 and 2014 

(Wang and others 2019). We used land cover data from 1984 as a predictor in the RF models to 

test the sensitivity of different vegetation classes to shifts in productivity. The average overall 
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accuracy for these land cover data is 84.1 ± 4.1% (mean and 95% confidence interval across all 

years of the time series; Wang and others 2019). Surficial geology data were obtained from 

Fulton (1989), cropped to the extent of the study area and rasterized for further analysis (Figure 

2.1b). We masked out any cells of the land cover and geology layers that were occupied by 

classes representing less than 1% of the study area (class descriptions can be found in 

Supplementary Tables 1 and 2). Spatial resolution of the data sources described above were 

matched to the EVI trend data (30 metres). Where resolution of a dataset was finer than 30 

metres, cells were aggregated by taking the mean of sub-pixels. We resampled continuous data 

using a bilinear interpolation method while categorical data used the nearest neighbour method. 

These operations were performed with the resample function from the raster package (Hijmans 

2020). Surficial geology and elevation data are shown in Figure 2.1b and Figure 2.1c; all other 

explanatory variables can be found in Supplementary Figure 2. 

Table 2.1. Explanatory variables used in random forests modelling. *20 metre resolution 

corresponds to the smallest size polygon (approximately 20 m2) in the original source data. 

Explanatory Variables Units Resolution Source 

Elevation metres 2 metres PGC ArcticDEM (Porter and others 2018) 

Slope degrees 2 metres PGC ArcticDEM derivative 

Topographic Wetness index 2 metres PGC ArcticDEM derivative 

Topographic Position index 2 metres PGC ArcticDEM derivative 

Terrain Ruggedness index 2 metres PGC ArcticDEM derivative 

Solar Insolation index 2 metres PGC ArcticDEM derivative 

Land Cover (1984) category 30 metres NASA ABoVE (Wang and others 2019) 

Surficial Geology category 20 metres* Fulton 1989 

 

2.3.4 Field Surveys 

To assess the influence of biophysical variables on recent changes in tundra productivity we 

measured biotic and abiotic variables at sites across the study area. Field sites were selected by 

randomly choosing 40 points in each of the productivity classes defined using the EVI trend 
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(moderate greening, high greening, and stability). Randomization was constrained such that the 

pixel (30 m2) containing the selected point was surrounded by the same greening class. We 

visited 21 stable sites, 32 moderate greening sites, and 26 high greening sites in July and August 

of 2019 (Figure 1.1a). At each site, we measured a suite of biotic and abiotic variables, as 

described below. 

Vegetation surveys and soil sampling were conducted along two intersecting 30-metre transects. 

Transects were orientated in north-south and east-west directions such that the 15-metre mark on 

both transects was centered on the predetermined site coordinate. These dimensions were 

selected to create a plot corresponding to the 30-metre resolution of one Landsat pixel. Thaw 

depth and soil moisture were measured at 5-metre intervals along each transect as well as inside 

all vegetation quadrats at a site. We measured soil moisture at 3-5 cm below the surface using a 

handheld moisture probe (Delta-T Devices HH2 Moisture Meter with ML3 ThetaProbe Soil 

Moisture Sensor). Thaw depth was measured using a graduated metal probe inserted into the 

ground until the depth of refusal. We visually estimated the percent cover of plant species or 

species groups inside nested 5 m2 and 1 m2 quadrats at four locations at every site. We positioned 

quadrats using a random point located inside each of the four quadrants of the cross transect 

(northwest, northeast, southwest, and southeast). We estimated the cover of upright shrubs and 

trees using the larger quadrat and the cover of dwarf shrubs, graminoids, herbaceous species, 

lichens, and bryophytes using the smaller quadrat.  

When vegetation cover estimates were completed, we collected a composite active layer soil 

sample from within each quadrat using a small shovel. The profile exposed during sample 

collection was also used to estimate the thickness of the moss layer and organic soil horizon. Soil 

samples were stored at -20°C before they were submitted for analysis of gravimetric soil 
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moisture, macronutrients including nitrogen and phosphorus, and micronutrients including 

magnesium, sulphur and calcium. Chemical analyses were carried out using an inductively 

coupled plasma mass spectrometer (ICP-MS) at the Chemical Services Laboratory at the Pacific 

Forestry Centre of the Canadian Forest Service in Victoria, British Columbia. 

2.3.5 Vegetation Community and Environmental Data Analysis 

To explore differences in community composition among sites exhibiting different levels of 

landscape scale greening we used non-metric multidimensional scaling (NMDS) ordination. We 

applied a log(x + 1) transformation to the raw vegetation percent cover data and ran the NMDS 

using a Bray-Curtis dissimilarity matrix of the transformed percent cover data. This analysis was 

set to repeat 100 times and select the best two-dimensional representation of the original data. 

The NMDS was performed using the metaMDS function from the vegan package (Oksanen and 

others 2019) in R. We used the analysis of similarities (ANOSIM; Clarke 1993) function 

(anosim) from vegan (Oksanen and others 2019) to test for statistically significant differences in 

vegetation community composition among the three sites types (stable, moderate greening, and 

high greening). To identify the species making the greatest contribution to differences among site 

types, a similarity percentage (SIMPER) analysis was conducted using the simper function in the 

vegan package (Oksanen and others 2019). We also compared the cover of vegetation classes in 

1984 and 2014 using the multiyear land cover classification presented in Wang and others 

(2019). Specifically, we calculated the percent cover of land cover classes in 1984 and 2014 and 

compared the differences across the entire study area and between the Yukon North Slope and 

Tuktoyaktuk Coastlands. 
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2.4 RESULTS 

2.4.1 Study Area Response Overview 

Approximately 70% of the study area showed significant increases in EVI between 1984 and 

2016 (Figure 2.2, Table 2.1). Split across the study area, 71% of the Tuktoyaktuk Coastlands 

showed significant greening compared to 66% of the Yukon North Slope (Table 2.2). The 

Tuktoyaktuk Coastlands also had a higher average EVI trend than the Yukon North Slope but 

was similar to the average across the entire study area (Table 2.2).  

 

Figure 2.2. Raw EVI trends (from Chen and others 2021) where un-trended and browning pixels 

are grey and brown, respectively. The inset at the top left shows the extent of the main map in 

the context of northwestern Canada and Alaska, USA. 

Table 2.2. Greening responses across the study area. 

 

Region 

 

Area 

Percent of  

Region Greening 

Mean EVI Trend in 

Region (Per Year) 

Entire Study Area 34,627 km2 70.2% 2.239 x 10-3  

Tuktoyaktuk Coastlands 29,184 km2 71.1% 2.274 x 10-3 

Yukon North Slope 5,443 km2 66.2% 2.97 10-3 
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2.4.2 Classification Random Forests Analysis 

The top four predictors in the classification RF were surficial geology, elevation, land cover in 

1984, and TWI (Figure 2.3). This model had user’s accuracy of 72.05% and was capable of 

classifying pixels as stable and greening with user’s accuracy of 73.5% and 70.6%, respectively. 

The area under the curve (AUC) of the receiver operating characteristic (ROC) is 0.796 (see 

Supplementary Figure 3). 

 

 

Figure 2.3. Variable importance in the classification random forest (predicting probability of 

significant greening) measured as the mean decrease in model accuracy scaled by the standard 

error of the change in model accuracy. 

Partial dependence plots for surficial geology show that till blanket, glaciofluvial complex, 

glaciofluvial plain, and lacustrine sand were more likely to exhibit greening than colluvial and 

alluvial materials, which had a greater probability of being stable (Figure 2.4a). The partial 

dependence plot for elevation shows that the greatest probability of greening occurred at 

elevations between 0 to 60 metres (Figure 2.4b). Elevations above approximately 60 metres had 

a higher probability of being stable. This analysis also showed that significant greening was most 

likely in low shrub, tussock tundra, and sparsely vegetated land cover classes, while tall shrub, 

fen, and barren cover classes were more likely to be stable (Figure 2.4c). With respect to 
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topographic variables, the partial dependence plot for topographic wetness (TWI) indicates an 

increased probability of greening at moderate landscape wetness (Figure 2.4d). Values of TWI 

greater than 7.5, at which significant greening was less likely, were largely associated with the 

margins of ponds and lakes as well as coastal tundra areas on the Tuktoyaktuk Peninsula. 
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Figure 2.4. Partial dependence plots for top four variables in order of importance from 

classification random forest: (A) Quaternary surficial geology (Fulton 1989), (B) elevation in 

metres (Porter and others 2018), (C) land cover in 1984 (Wang and others 2019), and (D) 

topographic wetness index. The dashed line on the y-axis in plots B and D indicate the point at 

which elevation (beyond ~50 metres) and wetness (lower than ~5 and greater than ~8) do not 

impact greening probabilities and are presented with decile rug marks of training data. 
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2.4.3 Regression Random Forests Analysis 

The four most important variables in the regression RF, which predicted the magnitude of 

greening, were surficial geology, elevation, and land cover, and TWI followed by a suite of 

variables related to topography (Figure 2.5). This model explained 20.41% of the variance in 

EVI trend based on the out-of-bag data.  

 

Figure 2.5. Variable importance in the regression random forest (predicting trends in enhanced 

vegetation index) measured as the percent increase in mean square error scaled by standard error 

of the change in accuracy. 

The partial dependence plots for the regression RF show that lacustrine sands, till blanket, and 

glaciofluvial complex cover are associated with more rapid greening (Figure 2.6a). Areas 

underlain by fine colluvium and till veneer had rates of EVI change lower than the average value 

(3.07 x 10-3 per year) for significantly trended pixels (Figure 2.6a). Areas covered by till blanket 

comprised roughly 46% of the entire study area, of which, over 51% are significantly greening 

(Table 2.3). The partial dependence plot for elevation shows that greening was most rapid at 

lower elevations (Figure 2.6b). At elevations above 50 metres, the calculated mean EVI trend 

was below the average EVI trend of significantly greening pixels (red dashed line; Figure 2.6b). 

Tussock tundra, low shrub, and sparsely vegetated land cover classes exhibited the greatest 
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predicted EVI trends (Figure 2.6c). The mean EVI trends across low shrub and tussock tundra 

classes were greater than the average EVI trend of significantly greening pixels (Table 2.4). The 

predicted EVI trend as a function of TWI decreased with higher index values, dropping below 

the average mean EVI trend of significantly greening pixels at approximately TWI of 8 (Figure 

2.6d). 

Table 2.3. Summary of Enhanced Vegetation Index (EVI) trends (per year) by surficial geology 

class in order of proportional cover of study area (Fulton 1989). The last column shows the 

proportion within each class that exhibited significant greening. 

Class 

Mean EVI 

Trend  

of 

Significantly 

Greening 

Pixels 

Standard 

Deviation of 

EVI Trend  

in Significantly 

Greening Pixels 

Proportion 

of Study 

Area (%) 

Proportion of 

Class that is 

Significantly 

Greening (%) 

Till Blanket 3.24 x 10-3 1.13 x 10-3 46.54 51.58 

Glaciofluvial Plain 2.80 x 10-3 1.13 x 10-3 16.66 16.71 

Fine Colluvial 2.58 x 10-3 1.29 x 10-3 11.75 7.74 

Till Veneer 2.55 x 10-3 9.79 x 10-4 8.49 7.39 

Lacustrine Sand 3.46 x 10-3 1.15 x 10-3 5.84 6.15 

Glaciofluvial Complex 3.18 x 10-3 1.05 x 10-3 5.54 6.31 

Alluvial 3.00 x 10-3 1.62 x 10-3 3.66 3.21 

All Classes 3.07 x 10-3 1.19 x 10-3 - - 
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Table 2.4. Summary of Enhanced Vegetation Index (EVI) trends (per year) by land cover class 

in order of proportional cover of study area (Wang and others 2019). The last column shows the 

proportion within each class that exhibited significant greening.  

Class 

Mean EVI 

Trend of 

Significantly 

Greening 

Pixels 

Standard 

Deviation of EVI 

Trend  

in Significantly 

Greening Pixels 

Proportion 

of Study 

Area (%) 

Proportion of 

Class that is 

Significantly 

Greening (%) 

Herbaceous 3.00 x 10-3 1.14 x 10-3 29.08 27.66 

Low Shrub 3.24 x 10-3 1.06 x 10-3 26.33 28.92 

Sparsely Vegetated 2.94 x 10-3 1.24 x 10-3 13.89 14.34 

Tall Shrub 2.95 x 10-3 1.26 x 10-3 13.13 11.80 

Tussock Tundra 3.21 x 10-3 1.02 x 10-3 11.68 13.30 

Barren 2.27 x 10-3 2.44 x 10-3 2.20 1.13 

Woodland 2.91 x 10-3 1.53 x 10-3 1.49 1.27 

Fen 2.75 x 10-3 1.29 x 10-3 1.48 1.37 

All Classes 3.07 x 10-3 1.19 x 10-3 - - 
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Figure 2.6. Partial dependence plots for the top four variables used in the regression random 

forest predicting EVI trend (per year): (A) Quaternary surficial geology (Fulton 1989), (B) 

elevation in metres (Porter and others 2018), (C) land cover in 1984 (Wang and others 2019) and 

(D) topographic wetness index. Note differing y-axis ranges among plots A-D. The dashed line 

on the y-axis in plots B and D highlights the mean EVI trend value for significantly greening 

pixels (3.07 x 10-3 per year). Plots B and D are presented with decile rug marks of training data. 
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2.4.4 Vegetation Community Analysis 

The NMDS ordination shows that heterogeneity in plant community composition was higher in 

the Tuktoyaktuk Coastlands compared to the Yukon North Slope. Moderate and high greening 

sites sampled in the Yukon had community composition that was largely indistinguishable from 

stable sites (RANOSIM = 0.039, PANOSIM < 0.05), whereas the Tuktoyaktuk Coastlands exhibited 

greater differentiation between sites with moderate and high greening (RANOSIM = 0.27, PANOSIM = 

0.001; Figure 2.7).  
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Figure 2.7. Non-metric multidimensional scaling (NMDS) ordination of vegetation community 

composition across the (A) Yukon North Slope (stress = 0.15) and (B) Tuktoyaktuk Coastlands 

(stress = 0.13). Sites split by classification with stable, moderate greening, and high greening 

shown as blue, green, and red points and polygons, respectively with abiotic vectors (p < 0.1) 

overlaid. The ordinations also plot associations between species and functional type (lichen) to 

cumulative contribution of 65% and NMDS score. Species abbreviations are defined in Table 

2.5. 
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In the Tuktoyaktuk Coastlands, stable and high greening sites exhibited significant differences in 

community composition (RANOSIM = 0.27). This difference was driven largely by greater 

abundance of Ledum decumbens, Betula spp. and Vaccinium vitis-idaea at high greening sites 

(Table 2.5). Conversely, we observed greater cover of lichens, V. uliginosum, Arctostaphylus 

spp., and Salix spp. at stable sites (Table 2.5). 

Table 2.5. Results of the SIMPER analysis showing the contribution of species and species 

groups to dissimilarly among site types across the Tuktoyaktuk Coastlands. The table shows the 

species and species groups accounting for 80% of the total dissimilarity and is ranked by the 

contribution to dissimilarity. The site type showing higher cover for a given species is shown in 

bold. The NMDS Code column lists the abbreviations used in Figure 2.7. This analysis was not 

completed for the Yukon North Slope because there were no differences in community 

composition among sites. 

  Percent Cover Contribution 

to 

Dissimilarity 

(%) 

Cumulative 

Contribution 

(%) Species 

NMDS 

Code High Greening Stable 

Vaccinium uliginosum VACULI 0.31 9.80 8.99 8.99 

Ledum decumbens LEDDEC 23.53 3.71 7.12 16.11 

Rubus chamaemorus RUBCHA 4.81 0.16 7.06 23.17 

Betula spp. BETULA 18.49 3.18 6.93 30.09 

Salix spp. SALIX 2.74 5.42 5.9 35.99 

Arctostaphylus spp. ARCTO 1.61 6.61 5.79 41.79 

Vaccinium vitis-idaea VACVIT 23.05 6.17 5.4 47.19 

Alnus crispa ALNUS 2.19 0.39 5.1 52.29 

Lichens - 6.46 15.44 4.98 57.27 

Dryas spp. DRYAS 0.00 2.16 4.76 62.03 

Equisetum spp. - 0.02 2.13 4.62 66.65 

Petasites frigidus - 3.14 0.92 4.5 71.15 

Graminoids - 10.47 13.30 3.64 74.79 

Empetrum nigrum - 11.55 7.67 3.3 78.09 

Bryophytes - 16.12 13.44 3.26 81.36 

 

Analysis of data from Wang and others (2019) indicate that sparse and herbaceous cover 

decreased by 7.5 and 6.2% across the entire study area between 1985 and 2014. These data also 
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show that low shrub and tall shrub cover increased by 4.8 and 6.0% over this period (Figure 2.8). 

The pattern of vegetation change was similar in both regions, but the magnitude of increases in 

shrub-dominant terrain were higher in the Tuktoyaktuk than the Yukon North Slope. The decline 

in herbaceous cover was also greater in the Tuktoyaktuk Coastlands compared to the Yukon 

North Slope (Figure 2.8).  

 

Figure 2.8. Changes in the area of selected land cover classes between 1984 and 2014 across the 

Yukon North Slope (green), Tuktoyaktuk Coastlands (blue), and both regions combined (red) 

measured using supervised classifications from Wang and others (2019). 

2.5 DISCUSSION 

Landscape-scale variation in surficial materials, topography, and vegetation structure were good 

predictors of changing tundra productivity because these factors influence access to both 

moisture and soil nutrients. Surficial materials govern the development of tundra soils and 

control nutrient and moisture availability. Parent materials impact soil formation through 

differential weathering and the mineral and chemical composition of the substrate (Brady and 
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Weil 1996; Walker 2000). Poorly sorted materials such as till veneer are often associated with 

exposed bedrock and are found at higher elevations in the foothills of the Richardson Mountains 

and on the Anderson Plain (Fulton 1989). These thin tills contain larger gravel and boulders and 

result in shallow, poorly developed soils that are unable to retain moisture and nutrients (Brady 

and Weil 1996). Till veneer was associated with stable vegetation in our study area, while the 

deeper soils that typically develop in areas of till blanket or glaciofluvial complexes were 

associated with greening (Figure 2.4a) and had higher EVI trend values than the average across 

the study area (Table 2.3). Finer-grained soils at lower elevation have a larger surface area, are 

less susceptible to leaching, and are able retain more nutrients for plant uptake (Walker and 

Everett 1991; Brady and Weil 1996).  

The importance of elevation in our RF models indicates that microclimatic variation associated 

with landscape position also impacts tundra vegetation productivity. Our observation that lower 

rates of greening and a reduced probability greening were associated with higher elevations 

suggests that cold temperatures, dry soils, and reduced snowpack on hilltops limit the effects of 

increasing regional temperatures on tundra productivity. Soils at higher elevation also tend to 

have more unconsolidated sediments and exposed bedrock, which likely limit productivity 

because of reduced moisture and nutrients.  

Differences in relative elevation drive variation in soil moisture that influence vegetation 

community development and productivity. Previous research shows that landscape scale 

variation in temperature, soil moisture and snow accumulation can impact the establishment and 

growth of tundra plants (Sturm and others 2001; Myers-Smith and others 2011; Niittynen and 

others 2020a; Niittynen and others 2020b). Our NMDS analysis also showed an association 

between elevated soil moisture and plant community composition at moderate and high greening 
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sites (Figure 2.7). A number of recent studies have demonstrated that soil moisture influences 

tundra vegetation growth (Myers-Smith and others 2015; Cameron and Lantz 2016; Ackerman 

and others 2017; Bjorkman and others 2018a) and indices of vegetation productivity (Campbell 

and others 2021; Chen and others 2021). Topographic variation in microclimate and soil 

moisture have also been shown to be better predictors of tundra greening at fine scales than 

broader-scale climate-related factors such as the total length of growing season (Gamon and 

others 2013). Soil moisture levels influenced by microclimate can drive increased nutrient 

mineralization and are likely an important mechanism of increased productivity (Chapin and 

others 1988; Deslippe and Simard 2011; Deslippe and others 2012; Mekonnen and others 

2021b). More rapid greening associated with moderate levels of topographic wetness indicate 

that tundra vegetation on mesic to moist soils is most sensitive to regional warming. This is 

likely because moderate soil moisture limits the negative effects of temperature-induced 

moisture stress on tundra growth and productivity (Johnson and Caldwell 1975; Dagg and 

Lafleur 2011; Myers-Smith and others 2015; Ackerman and others 2017). Snowmelt associated 

with the onset of spring can also increase soil moisture in areas of large drifts, contributing to an 

influx of moisture to tundra soils. Gamon and others (2013) found that earlier snowmelt was 

associated with drier soils and lower mid-season NDVI which highlights the complex interaction 

between moisture availability and growing season. Winter conditions (notably snow cover) are 

also important to consider since winter is a crucial period in the development of vegetation 

communities and their functional diversity (Niittynen and others 2020a; Niittynen and others 

2020b). 

Vegetation type was a good predictor of EVI trends because some functional groups, such as 

shrubs and graminoids, are more responsive to changes in temperature and soil conditions. 
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Specifically, many species of deciduous shrub are adapted to respond to changes in nutrients 

availability, the length of the growing season, and moisture availability at the onset of spring 

(Chapin and others 1995; Hobbie and Chapin 1998; Bret-Harte and others 2001; Myers-Smith 

and others 2011; Kelsey and others 2020). Increased productivity in shrub tundra communities 

was likely also driven by the ability of deciduous shrubs to rapidly allocate resources to 

secondary growth and asexual reproduction (Bret-Harte and others 2001; Wiedmer and Senn-

Irlet 2006; Ropars and Boudreau 2012). Taller, shrub dominated vegetation may also increase 

soil moisture and nutrient availability via increased snow capture (Sturm and others 2001; Wipf 

and Rixen 2010; Leffler and others 2016; Niittynen and others 2020a). Observed increases in the 

productivity of tussock tundra may be related to variability of substrate properties including 

grain size and soil chemistry that are predicted to favour development of moist-acidic tundra 

with climate warming (Walker and others 1998; Epstein and others 2004a; Epstein and others 

2012). The tussock growth form of species such as Eriophorum vaginatum is also highly 

conducive to growth in nutrient poor environments through nutrient cycling within tussocks 

(Cholewa and Griffith 2004) and growth of deeper roots (Chapin and others 1988). Our results 

are also consistent with a number of studies linking tundra greening with productive cover types 

(Jia and others 2006; McManus and others 2012; Frost and others 2014; Campbell and others 

2021; Chen and others 2021) and shrub proliferation in the low Arctic in particular (Tape and 

others 2006; Ropars and Boudreau 2012; Lantz and others 2013; Frost and others 2014; Moffat 

and others 2016). Our comparisons of land cover over time also show that the proportion of 

shrub and tussock tundra have increased since 1984 in our study regions. Higher cover of 

shrubby vegetation types in the Tuktoyaktuk Coastlands likely drove differences in the extent 

and distribution of greening between regions. Past research in this region has also shown an 
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association between gains in shrub and herbaceous cover and increases in NDVI (Wang and 

Friedl 2019). The Yukon North Slope has experienced less of a transition to shrub tundra than 

the Tuktoyaktuk Coastlands (Figure 2.8) with greater overall similarity in community 

composition across the region (Figure 2.7) and we attribute the difference in the extent of 

observed greening between these two regions (Table 2.2) to differences in the intensity of shrub 

proliferation. 

Average annual and summer temperatures across the Beaufort Delta region have increased by 3.5 

℃ and 1.9 ℃, respectively, between 1926 and 2019 (Travers‐Smith and Lantz 2020) with 

largely homogenous warming across the region (Vincent and others 2015). Widespread increases 

in tundra productivity are likely a response to the direct and indirect effects of this warming. 

Productivity responses to warming are well documented, but environmental limitations also drive 

differences in the response of vegetation across the Arctic (Walker and others 2006; Hudson and 

Henry 2009; Elmendorf and others 2012; Myers-Smith and others 2015). NDVI trends across the 

Arctic Coastal Plain of Alaska also show complex responses to changes in temperature and 

precipitation across terrain types, suggesting that climatic drivers are mediated by regional 

environmental factors (Lara and others 2018). Underlying climate drivers, landscape and 

regional variability in soils and topography are key determinants of spatial heterogeneity in 

vegetation responses (Raynolds and others 2008; McManus and others 2012; Lara and others 

2018). This conclusion is consistent with recent studies on spatial patterns of productivity trends 

across northwestern North America (Chen and others 2021) and on Banks Island (Campbell and 

others 2021), and complements previous research highlighting terrain variability driving these 

regional patterns (Jia and others 2006; Tape and others 2006; Walker and others 2009; McManus 

and others 2012; Tape and others 2012; Berner and others 2020; Niittynen and others 2020a). 
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Our results using EVI trends to map tundra greening are comparable to those of studies using 

NDVI responses suggesting similar spatial patterns of greening (Myers-Smith and others 2020) 

and mechanisms driving vegetation change (Jia and others 2006; Raynolds and others 2008; 

McManus and others 2012). Further, EVI uses additional spectral and angular information not 

used by NDVI, implemented to address known issues with NDVI related to solar incidence and 

atmospheric conditions present (Liu and Huete 1995). 

While some researchers recommend accounting for temporal autocorrelation in time series 

through pre-whitening methods (Guay and others 2014; Berner and others 2020), we do not 

believe that this is an issue in our analyses given the temporal revisit rate of the data used and the 

rates of phenological development present in tundra ecosystems. Weak evidence of temporal 

autocorrelation of NDVI have also been documented in areas dominated by deciduous vegetation 

compared to evergreen vegetation due to seasonal foliage replacement and other differences in 

reliance on previous-year nutrient storage (Berner and others 2011). Additionally, our methods 

are consistent with other studies using vegetation index time series that do not implement pre-

whitening procedures (Fraser and others 2014b; Nitze and Grosse 2016; Raynolds and Walker 

2016; Lara and others 2018). 

The Tuktoyaktuk Coastlands and Yukon North Slope provide habitat to a diversity of mammals 

including caribou, muskox, bears, wolves, Dall’s sheep, red fox, and wolverine (Russell and 

others 1993; YEWG 2004; Rickbeil and others 2018). Our observation that tussock and dwarf 

shrub tundra at lower elevations are most prone to increased vegetation productivity suggest that 

caribou who utilize this habitat type while avoiding upright shrub tundra (Russell and others 

1993; Johnstone and others 2002; Rickbeil and others 2018) will be significantly impacted by 

ongoing vegetation change. The impacts of vegetation change on habitat use in this region 
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should be assessed by combining landscape-scale data on vegetation change with satellite 

telemetry data for caribou and other important species (see: Rickbeil and others 2018). Range 

expansion of moose (Tape and others 2016) and beavers (Jung and others 2016) may also be 

related to vegetation change and should be explored using systematic surveys and satellite 

telemetry. 

Several recent analyses suggest that coarse resolution imagery can mute the complexities of 

finer-scale ecological patterns resulting in disagreement among coarse-scale remote sensing 

platforms (Guay and others 2014; Berner and others 2020; Myers-Smith and others 2020). Our 

findings show that landscape scale variation in biophysical characteristics strongly influence 

vegetation dynamics evident in moderate-resolution (30 m) Landsat imagery. Since tundra 

ecosystems exhibit heterogeneity at scales of 1-2 metres (Epstein and others 2004b; Lantz and 

others 2010b; Assmann and others 2020; Myers-Smith and others 2020), it is possible that 

change detection using higher-resolution sensors (such as 0.5 – 3 m resolution imagery from 

WorldView, QuickBird, and PlanetScope) could account for some of the unexplained variation 

in our models. We suggest that future research utilize high-resolution sensors calibrated to 

temporally contemporaneous Landsat (Markham and Helder 2012; Belward and Skøien 2015) or 

Sentinel-2 (Drusch and others 2012) imagery. This integration of measurements from a greater 

variety of sensing platforms and the use of Sentinel-2 imagery cross-calibrated with Landsat 

offers a compelling advance in remote sensing capabilities (Wulder and others 2015; Claverie 

and others 2018) and to avail upon samples of fine scale earth observations to improve models or 

offer insights on the nature of local vegetation heterogeneity.  

Recent work using remotely piloted aircraft systems (RPAS; or drones) also emphasizes the 

influence of fine-scale variability in topography on the composition and productivity of tundra 
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plant communities (Assmann and others 2020; Cunliffe and others 2020; Myers-Smith and 

others 2020). Increased affordability of RPAS systems has facilitated the collection of higher 

spatial resolution data representing increasingly large areas and future research can take 

advantage of these tools to monitor changes at fine scales (Fraser and others 2016; Assmann and 

others 2020; Cunliffe and others 2020). We encourage the use of RPAS surveying under 

standardized flight and recording protocols, such as through the High Latitude Drone Ecology 

Network (HiLDEN; arcticdrones.org), to address this gap in spatial data. These data can help 

further explain the complex interactions between vegetation and environmental and climatic 

influences across spatial scales while covering greater area than is possible with ground surveys. 

Vegetation indices derived from satellite imagery (such as EVI or NDVI) may be influenced by 

factors altering surface reflectance like standing water or vegetative stress (Roy 1989; Ollinger 

2011). Higher resolution imagery will make it possible to assess the influence of soil moisture, 

physiological stress, and disease on vegetation indices. 

2.6 CONCLUSIONS 

Global climate change is driving rapid increases in vegetation productivity across northern 

latitudes. The spatial heterogeneity in productivity trends highlighted in this study are the result 

of finer-scale, landscape processes that mediate the effects of regional climate warming. Surficial 

geology and topography are among the best predictors of spatial pattern in tundra greening 

because they influence soil conditions and moisture. Vegetation type also strongly influence 

changes in productivity because deciduous shrubs can respond rapidly to changes in moisture, 

nutrients, and temperature. Tundra vegetation change will impact wildlife habitat (Rickbeil and 

others 2018), surface energy balance, and carbon storage (McGuire and others 2006; Schaefer 

and others 2014) and understanding the drivers of landscape scale variation in vegetation shifts is 
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critical to accurately characterize these relationships. We encourage continued research using 

random forests modelling to identify the role of regional processes as they relate to broader 

environmental change across spatial and temporal scales.  
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3.1 INTRODUCTION 

Species distribution modelling is a common technique used to quantify the influence of climate 

and terrain factors on species’ ranges and to assess the impacts of climate warming on their 

future distributions (Guisan and Zimmermann 2000). Several correlative modelling techniques 

including linear modelling, machine learning, and ensemble models combining multiple methods 

are used to relate ecological predictors to species occurrence data. Many species distribution 

models (SDMs) utilize presence-only data, which are widely available in open-access 

repositories such as the Global Biodiversity Information System (gbif.org). With the exception of 

profile techniques (e.g. BIOCLIM, DOMAIN, ecological niche factor analysis), models built 

using presence-only data rely on randomly selected pseudo-absence (or background) data to 

represent absence locations, which are used to provide information on the total variability in 

environmental predictors across a selected area (Phillips and others 2009). Previous studies have 

shown that the use of pseudo-absence data can negatively impact model performance and 

interpretation through sampling bias and poor data quality and spatial accuracy (Pearce and 

Boyce 2006). When pseudo-absence locations do not complement spatial coverage and sampling 

effort of presence observations, model predictions lose the ability to accurately portray 

distributions across the entire study domain (Phillips and others 2009). However, standard 

performance metrics indicate that many studies using pseudo-absence data have also performed 

favourably (Barbet-Massin and others 2018; Zhang and others 2019; Kaky and others 2020).  

In their review of 250 SDM studies, Santini and others (2021) found over 84% of SDMs used 

pseudo-absences or background data. In many such cases, pseudo-absences are used to represent 

locations where species are not present in logistic regression or other binary response methods 

that require absence data (Wisz and Guisan 2009). However, a lack of best practices to determine 
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pseudo-absence locations adds to the confusion and reduced interpretability of SDM studies 

using this approach (Barbet‐Massin and others 2012; Santini and others 2021). To the best of our 

knowledge, few studies have addressed differences in model predictions and accuracy as a result 

of differences in data type. In this study, we investigate how data type (true absence or pseudo-

absence) influences: 1) SDM performance, 2) estimates of habitat suitability, and 3) projections 

of change in habitat suitability for three common tundra shrub species. By exploring the use of 

different data types, we seek to understand how differences in the data type may influence the 

application of SDMs. 

This study focusses on the Beaufort Delta region in the western Canadian Arctic, an area 

experiencing the most rapid temperature increases in Canada (Vincent and others 2015). This 

warming is increasing the productivity of tundra landscapes (Tape and others 2006; Lantz and 

others 2013; Fraser and others 2014a; Campbell and others 2021; Seider and others In Review) 

and facilitating widespread shrub proliferation (Lantz and others 2013; Moffat and others 2016; 

Travers‐Smith and Lantz 2020). In our analysis, we explore differences in the sensitivity of three 

shrub species to climate change by comparing projected changes in habitat suitability with 

climate warming. Specifically, we developed SDMs for Alnus viridis (green alder, a deciduous 

tall shrub), Betula glandulosa and B. nana (dwarf birch, a deciduous dwarf shrub), and 

Vaccinium vitis-idaea (lingonberry, an evergreen dwarf shrub) and applied a future high-

emissions climate scenario projecting habitat suitability to the period between 2061 and 2080.  

Documenting variation in the responses of different shrub species to climate change is important 

as vegetation structure has a significant impact on the climate system (Bonan and others 2003; 

Port and others 2012). Since shrubs influence carbon cycling and permafrost dynamics, 

understanding change is important for existing global climate models (McGuire and others 
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2006). Accurate projections of changes in shrub abundance are also important because shrubs are 

expected to significantly impact wildlife (Joly and others 2007) and Inuvialuit and Gwich’in 

communities (Wildlife Management Advisory Council and Aklavik Hunters and Trappers 

Committee 2018). Our investigation into SDM parameterization can provide insights on the use 

of these modern techniques as they apply to climate modelling and ecosystem conservation. 

3.2 METHODS 

3.2.1 Study Area 

This study focuses on the Beaufort Delta region of the northern Yukon and Northwest 

Territories, covering an area of approximately 161,000 km2 (Figure 3.1). The southern portion of 

this area includes the Yukon and Tuktoyaktuk Coastal Plains and the Bathurst Peninsula 

ecoregions, which are characterized by rolling hills dominated by shrub and tussock tundra as 

well as low lying wetland habitats (Yukon Ecoregions Working Group [YEWG], 2004; 

Ecosystem Classification Group [ECG], 2012). The Yukon and Tuktoyaktuk Coastal Plain 

ecoregions are separated by the Mackenzie Delta ecoregion, which consists of low-lying alluvial 

terrain where a mosaic of forest, woodland, shrubland, and sedge wetland is strongly influenced 

by the hydrology of the delta (Gill 1972, 1973; Pearce 1986; Burn and Kokelj 2009). The 

northern part of the study area includes the Banks Island Coastal Plain and Banks Island 

Lowland ecoregions, a mid-Arctic landscape characterized by hummocky tills and glaciofluvial 

plains with some exposed bedrock throughout (ECG, 2012). Vegetation communities on Banks 

Island are controlled primarily by soil moisture (Campbell and others 2021) with well-drained 

upland terrain occupied by a mix of barrens and dwarf-shrub tundra and wetter lowland terrain 

dominated by more productive sedge tundra (ECG, 2012). All regions within the study area are 

underlain by continuous permafrost and exhibit common permafrost features such as polygonal 
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terrain, hummocks, and thaw slumps (Rampton 1982, 1988; YEWG, 2004; ECG, 2012). With 

the exception of the Yukon Coastal Plain and of the northern tip of Tuktoyaktuk Peninsula, the 

study area was covered by the Laurentide Ice Sheet during the Wisconsinan Glaciation (Jessop 

1971; Rampton 1988; ECG, 2012).  

 
Figure 3.1. Map of the study area in the Beaufort Delta region. Inset A shows the extent of main 

map (red) in North America and inset B is an enlargement of Herschel Island (the green 

rectangle on the main map). 

3.2.2 Study Design Overview 

To investigate the influence of data type on ensemble SDM performance and predictions of 

habitat suitability of three common tundra shrubs (alder, birch, and lingonberry), we created two 

models for each species: one using true absence data and one using pseudo-absence data. Since 

all other model parameters and environmental variables remained constant, we attribute 

differences in model performance and predictions of suitability to data type. Additionally, we 
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projected habitat suitability for each species into the future using a high-emissions climate 

scenario for 2061-2080 to relate our current understanding of tundra shrub to potential shifts in 

their future distributions. 

3.2.3 Species  

We selected species for this analysis representing three shrub functional types. Green alder 

(Alnus viridis, also known as A. crispa, or more recently, A. alnobetula) was selected to represent 

deciduous tall shrubs. This tall shrub has a broad distribution across the northern hemisphere and 

is known to establish on newly formed mineral soils after disturbance (Furlow 1979). Green 

alder is primarily a subarctic species (Furlow 2020), but several recent studies have documented 

increases in alder stand density and abundance across the low Arctic tundra of Alaska (Tape and 

others 2006), Northwest Territories (Travers‐Smith and Lantz 2020), Labrador (Larking and 

others 2021), and Siberia (Frost and Epstein 2014). As an exemplar of deciduous dwarf shrubs, 

we used a species complex including Betula glandulosa and B. nana. These dwarf birches are 

both found on nutrient-poor, well-drained, moist-acidic soils across the circumpolar (De Groot 

and others 1997). They are taxonomically confused, particularly where their ranges overlap and 

hybridization makes species identification difficult (De Groot and others 1997). For this reason, 

we consider observations of both these species to represent the deciduous shrub functional type. 

Finally, lingonberry (Vaccinium vitis-idaea) is an evergreen dwarf shrub common across the low 

Arctic and southern boreal on dry to moist soils (Taulavuori and others 2013). Throughout this 

paper, we refer to each species by its common name (alder, birch, and lingonberry). 

Plot-level presence/absence data used to parameterize regional models were obtained from a 

number of sources. Vegetation data from the NWT were collected from surveys conducted 

between 2005 and 2019 (see: Lantz and others 2009; Lantz and others 2010a; Gill and others 
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2014; Steedman 2014; Cameron and Lantz 2016; Chen 2020; Travers‐Smith and Lantz 2020; 

Shipman 2021; Seider and others In Review). Vegetation cover data from across northern Yukon 

were obtained, with permission, from the Yukon Biophysical Inventory System (Yukon 

Territorial Government 2021). These data were collected from field surveys conducted between 

2000 and 2015. Data from southern Banks Island were obtained, with permission, from the 

Canadian Wildlife Service (see: Campbell and others 2021). To use these percent cover data in 

our SDMs, we converted them to presence/absence for each species at each site. The spatial 

accuracy of the plot locations all of these data sources is much greater that the 30 arcseconds 

resolution of the environmental predictors. To minimize the possibility of pseudo-replication and 

to ensure that models were not trained using multiple observations within the same cell, we 

implemented a spatial thinning procedure to ensure no two observations were closer than 5 km 

using the ensemble.spatialThin function from the BiodiversityR package (version 2.12-3; Kindt 

and Coe 2005). We chose the thinning distance of 5 km as a conservative buffer since the spatial 

resolution of 30 arcseconds of predictor variables at the northern-most point of our study area is 

approximately 1 km. Maps of the presence and absence locations post-thinning for each species 

are presented in Supplementary Figures 4-6. 

To use these data in presence-only models, we converted presence/absence data to presence-only 

data by removing any observations of true absences from the data. We then used a random 

pseudo-absence strategy selecting points with a minimum distance of 5 km from presence 

locations to generate pseudo-absence points using the BIOMOD_FormatingData function. This 

strategy implements a random selection of points from all possible cells of predictor data outside 

the pre-determined buffer (see: Fournier and others 2017; Kaky and others 2020) providing a 

sample of predictor variability that can be contrasted to the variability within presence locations 



54 
 

(Phillips and others 2009). We used three repeats of pseudo-absence selection with the total 

number of pseudo-absence points in each selection equal to the number of observed presence 

locations. We used the average model predictions from all pseudo-absence selections to generate 

ensemble predictions of habitat suitability. 

3.2.4 Climate Predictor Variables 

Historic (1970-2000) climate data (30 arcsecond resolution) used to parameterize our models 

were obtained from the WorldClim v2.1 dataset (Fick and Hijmans 2017). Climate parameters in 

this dataset consist of 19 ecologically relevant variables derived from average monthly 

temperature and precipitation values (Fick and Hijmans 2017). We performed a hierarchical 

cluster analysis on these data and grouped the 19 variables using the resulting correlation matrix. 

Variables were grouped if they had a Pearson’s r greater than 0.7, following the method used by 

Fournier and others (2017). We then selected one variable from each group to best represent a 

diversity of climate factors relating to temperature and precipitation. Based on this clustering 

(Supplementary Figure 7), we chose the following seven variables to represent climate across the 

study area: annual mean temperature, mean diurnal range, isothermality, temperature seasonality, 

mean temperature of the coldest quarter, precipitation seasonality, and precipitation of the 

warmest quarter (Table 3.1). 
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Table 3.1. Bioclimatic variables from WorldClim (Fick and Hijmans 2017) used in this analysis. 

Variable descriptions are from on O’Donnell and Ignizio (2012). 

Identifier Bioclimatic Variable Variable Description 

BIO_01 Annual Mean Temperature Average of monthly mean temperature (°C) 

BIO_02 Mean Diurnal Range Average of monthly temperature ranges (°C) 

BIO_03 Isothermality Mean diurnal temperature range divided by annual 

temperature range 

BIO_04 Temperature Seasonality Temperature variability over the year measured as a 

ratio of the standard deviation of the monthly mean 

temperatures to the mean monthly temperature (%) 

BIO_11 Mean Temperature of the 

Coldest Quarter 

Mean temperature of the coldest consecutive three 

months (°C) 

BIO_15 Precipitation Seasonality Variation in monthly precipitation over the year 

measured as a ratio of the standard deviation of the 

monthly total precipitation to the mean monthly 

total precipitation (%) 

BIO_18 Precipitation of the 

Warmest Quarter 

Sum of monthly precipitation values for the three 

warmest consecutive months 

Species range projections utilized downscaled global climate model (GCM) data from the 

Coupled Model Intercomparison Project Phase 5 (CMIP5; Taylor and others 2012). To obtain 

these data, we followed methods described in Lee et al. (2019) and used a multi-model ensemble 

of four GCMs (CCSM4 from the National Center for Atmospheric Research, GFDL-CM3 from 

the Geophysical Fluid Dynamics Laboratory, HadGEM2-ES from the Met Office Hadley Centre, 

and MPI-ESM-LR from the Max Planck Institute for Meteorology). We chose the RCP8.5 

scenario developed for CMIP5 to base our models on the most severe estimates of future 

warming. This “worst-case” scenario presents a future defined by high carbon emissions with 

radiative forcing of 8.5 W/m2 by 2100 (Moss and others 2010). These GCMs are available as 

downscaled data using WorldClim (version 1.4) as the climate baseline and averaged from 2061 

to 2080 to 30 arcseconds resolution (Hijmans and others 2005). To create the ensemble climate 

projection, we took a simple average of each individual bioclimatic variable from each GCM, as 

obtained from WorldClim, using the terra package. Maps of each variable under current and 

future climate conditions are presented in Supplementary Figures 8 and 9. 
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3.2.5 Environmental Predictor Variables 

We used elevation data from the ArcticDEM available from the Polar Geospatial Center (Porter 

and others 2018) to create a 2-metre resolution digital elevation model (DEM) across the study 

area. We aggregated the DEM to 30-metre resolution by taking the mean of the sub-pixels before 

applying any further transformations to improve data processing efficiency. Cells of missing data 

in this DEM were filled using the Multi-Error-Removed Improved Terrain (MERIT) DEM 

(Yamazaki and others 2017) that we resampled to match the resolution and extent of the 

ArcticDEM area using the bilinear method in the resample function of the terra package. We 

calculated slope using the terrain function from the terra package and the vector ruggedness 

measure (VRM) using the tool developed by Sappington et al. (2007) implemented in ESRI 

ArcMap (version 10.6.1). VRM provides a measure of ruggedness that is independent of slope 

and is represented as an index value between 0 and 1, where 0 is considered flat and 1 is most 

rugged (Sappington and others 2007). Throughout this paper, we refer to VRM as “ruggedness”. 

We resampled all environmental data from 30 metres to match the 30 arcseconds resolution used 

in this analysis using the bilinear method of the resample function in the terra package. Maps of 

elevation, slope, and ruggedness are presented in Supplementary Figure 10. We also used the 

NASA ABoVE annual land cover classification (Wang and others 2019) to remove any cells 

from the analysis that were classified as “water” in 2014 (the last available year of data).   

3.2.6 Species Distribution Modelling 

We evaluated the influence of data type: 1) presence/absence data and 2) presence/pseudo-

absence data on species distribution models (SDMs) for three tundra shrub species representing 

different functional types (deciduous tall shrub, deciduous dwarf shrub, and evergreen dwarf 
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shrub). We also used these models to investigate the relative response of each species to climate 

change under projected climate warming scenarios.  

Ensemble SDMs were generated using the biomod2 package (version 3.4.13; Thuiller and others 

2020) in the R statistical software (R Core Team 2019). Ensemble models included generalized 

linear models (GLM), generalized boosted models (GBM), multiple adaptive regression splines 

(MARS), artificial neural networks (ANN), and random forests (RF) algorithms, which were set 

to use default modelling options in the biomod2 package. These models represent a mix of 

traditional linear techniques (GLM and MARS), decision trees (GBM, and RF), and machine 

learning (ANN, GBM, and RF) algorithms. Ensemble SDM analyses commonly use a wide 

variety of such algorithms with successful results (Fournier and others 2017; Lee and others 

2019; Kaky and others 2020). We chose to use an ensemble method because recent work has 

shown that no single SDM algorithm has superior prediction power (Segurado and Araújo 2004; 

Hao and others 2020). The ensemble method has also been shown to out-perform individual 

models in SDM studies (Marmion and others 2009). We generated ensemble models to create 

projections of species habitat suitability by taking the mean of individual models as described in 

Table 3.2. We also used ensemble models to project future habitat suitability using CMIP5 

RCP8.5 climate data.  
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Table 3.2. Model descriptions. 

Algorithm R Package Description 

Generalized Linear 

Model (GLM) 

glm Extension of ordinary linear regression allowing for 

error distributions other than Gaussian.  

Generalized Boosted 

Model (GBM) 

gbm Non-parametric method using a combination of decision 

tree models implemented with boosting methods for 

weighted randomization of data in each successive tree. 

Multiple Adaptive 

Regression Splines 

(MARS) 

earth Non-parametric method creating multiple linear 

regression models (with different slopes) across the 

range of data and finding the optimal connection points 

between each segment to create one model. 

Artificial Neural 

Networks (ANN) 

nnet Single hidden layer neural network using back-

propagation to adjust weights and biases to increase 

model performance.  

Random Forests (RF) randomForest Ensemble decision tree algorithm incorporating 

randomized bagging method to subset available data 

used in each individual tree. Data are run through all 

trees and the final classification is based on the majority 

vote. 

To independently evaluate the performance of ensemble SDMs, we used independent validation 

data to calculate the true skill statistic (TSS). For each ensemble model, we set aside a random 

subset of 20% of the data for this purpose. TSS values between 0.41 and 0.6 are interpreted as 

exhibiting “moderate” agreement while values greater than 0.6 are interpreted as exhibiting 

“substantial” agreement or predictive performance (Landis and Koch 1977). TSS is preferred 

over the area under the receiver operating characteristic curve (commonly, AUC) because it is 

independent of species prevalence (Allouche and others 2006). 

To understand the potential drivers of shrub species’ distributions in the Beaufort Delta region 

and assess the influence of environmental predictors on habitat suitability under projected 

climate warming we used the variable importance function in biomod2. This function calculates 

variable importance by randomizing a single variable in each of five randomized permutations to 
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calculate the correlation between the predictions of the complete and randomized-variable 

ensemble models (Thuiller and others 2020). Variables that have a lower correlation value when 

removed from the model are assumed have greater influence on model predictions.  

3.3 RESULTS 

All the SDMs constructed in this analysis had TSS scores indicating reasonable model 

performance with scores ranging from 0.600 (for the birch pseudo-absence model) to 0.762 (for 

the alder true absence model; Table 3.3). TSS scores were similar among all models but there 

were large differences in habitat suitability projections between true absence and pseudo-absence 

models (Figures 3.2-3.4). The SDMs for current climate conditions showed clear differences in 

habitat suitability predictions between data types. For alder, the pseudo-absence model projected 

greater suitability along the coastal margin of the Yukon North Slope and near the community of 

Tuktoyaktuk compared to the true absence model, in which the highest habitat suitability was 

located in the southern part of the study area (Figure 3.2). Birch and lingonberry had similar 

habitat suitability, but the spatial pattern varied between models using true absence and pseudo-

absence data (Figures 3.3 and 3.4). The true absence models for these species showed high 

suitability over a large area including the Tuktoyaktuk Coastlands and Bathurst Peninsula and 

extending eastward to the area south of Cape Bathurst (locations referenced in Figure 3.1). In 

contrast to this, the pseudo-absence models for birch and lingonberry had the highest suitability 

across the Yukon North Slope, Herschel Island, and a more restricted portion of the Tuktoyaktuk 

Coastlands. The pseudo-absence models for birch and lingonberry also had lower overall 

suitability across the entire study area compared to the true absence models for these species 

(Table 3.4).  
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Differences in projected future habitat suitability also varied between true absence and pseudo-

absence models. The spatial pattern of future suitability for alder was similar between data types 

with the notable difference that the pseudo-absence model predicted a weaker response to 

warming (Figure 3.2). The projected responses of birch habitat suitability to future climate using 

the true absence model showed a moderate increase in suitability across the southern regions, 

while the pseudo-absence model showed a reduction in habitat suitability in the southern part of 

the study area accompanied by a relatively small increase on Banks Island (Figure 3.3). This 

same pattern was evident in the models for lingonberry (Figure 3.4).  

True absence and pseudo-absence models also showed considerable variation in the variables 

driving model projections (Table 3.5). For all species, elevation was a more important variable 

the pseudo-absence models compared to their true absence counterparts. Differences in variable 

importance between data types were otherwise species-dependent. Precipitation of the warmest 

quarter was the second most important variable in the pseudo-absence model for alder whereas 

this variable ranked sixth in the true absence model (Table 3.5). Precipitation and temperature 

seasonality ranked top in the true absence alder model with these same variables ranking lower at 

third and seventh in the pseudo-absence model, respectively (Table 3.5). Mean temperature of 

the coldest quarter was important in pseudo-absence models for birch and lingonberry, whereas 

mean diurnal range was important in true absence models for these species (Table 3.5).  

Projected shifts in habitat suitability in response to climate warming showed similar patterns, but 

large differences in the magnitude of change among species. SDMs projected that climate 

warming will enhance habitat suitability beyond the current range limits of alder, birch and 

lingonberry (Table 3.4). However, contrary to our expectations, climate warming reduced habitat 

suitability for all three species in the centre of the study area (Figure 3.2-3.4). Projections of 
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alder habitat suitability under RCP8.5 in the true absence model showed reduced suitability in 

the centre of the study area and moderate increases in suitability beyond its current range on 

Banks Island. A similar response was evident for birch and lingonberry, but the overall increases 

in suitability were greater than that of alder. Lingonberry modelled using true absence data 

exhibited the greatest increase in suitability across the entire study area (increase of 0.267; Table 

3.4). The response for birch and alder were slightly lower at 0.162 and 0.173, respectively (Table 

3.4). Histograms of the distribution of habitat suitability for each SDM are presented in 

Supplementary Figures 11-13. Average current and future habitat suitability for alder was the 

lowest among the three shrubs; however, increases in suitability were of a similar magnitude as 

birch. Important variables in the true absence alder model were different than in both birch and 

lingonberry models. In the alder model, precipitation and temperature seasonality were the most 

important, while mean annual temperature and mean diurnal range were most important in birch 

and lingonberry models (Figure 3.5). Across both data types and all species, slope, ruggedness, 

and isothermality were the variables with the lowest importance. 

Table 3.3. Ensemble model performance measured using the True Skill Statistic (TSS) 

calculated using independent data. Bolded values indicate the highest performing model for each 

species. 

 True Absence Model Pseudo-absence Model  

Alder (Alnus viridis) 

Deciduous Tall Shrub 

0.762 0.726 

Birch (Betula nana and B. glandulosa) 

Deciduous Dwarf Shrub 

0.733 0.600 

Lingonberry (Vaccinium vitis-idaea) 

Evergreen Dwarf Shrub 

0.603 0.746 
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Table 3.4. Mean and standard deviation of habitat suitability across the entire study area for each 

model under current (1970 to 2000) and future (2061 to 2080) climate.  

  True Absence Pseudo-absence 

  

Mean 

Standard 

Deviation Mean 

Standard 

Deviation 

Alder (Alnus viridis) 

Deciduous Tall Shrub 

Current 0.122 0.171 0.122 0.210 

Future 0.295 0.079 0.212 0.082 

Change 0.173 - 0.090 - 

Birch (Betula nana and B. glandulosa) 

Deciduous Dwarf Shrub 

Current 0.345 0.316 0.247 0.280 

Future 0.507 0.097 0.312 0.063 

Change 0.162 - 0.065 - 

Lingonberry (Vaccinium vitis-idaea) 

Evergreen Dwarf Shrub 

Current 0.341 0.311 0.228 0.274 

Future 0.608 0.088 0.315 0.083 

 Change 0.267 - 0.087 - 

 

 

Figure 3.2. Ensemble habitat suitability maps for alder (Alnus viridis) projected under current 

and future climate conditions using true absence and pseudo-absence models. 
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Figure 3.3. Ensemble habitat suitability maps for birch (Betula nana and B. glandulosa) 

projected under current and future climate conditions using true absence and pseudo-absence 

models. 
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Figure 3.4. Ensemble habitat suitability maps for lingonberry (Vaccinium vitis-idaea) projected 

under current and future climate conditions using true absences and pseudo-absences models.  

 

Table 3.5. Ranking of variables in order of importance (1 is most important and 10 is least 

important) for each species for both true absence (TA) and pseudo-absence (PA) models. The top 

three variables in each model are shown in bold. 

 Alder Birch Lingonberry 

Variable TA PA TA PA TA PA 

Annual Mean Temperature 4 4 1 3 1 2 

Mean Diurnal Range 10 9 2 5 2 5 

Isothermality 8 10 8 8 8 10 

Temperature Seasonality 2 7 9 6 10 6 

Mean Temperature of the Coldest Quarter 9 5 4 1 6 3 

Precipitation Seasonality 1 3 6 7 3 7 

Precipitation of the Warmest Quarter 6 2 3 4 4 4 

Elevation 3 1 7 2 7 1 

Slope 5 8 10 9 9 8 

Ruggedness 7 6 5 10 5 9 
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Figure 3.5. Importance scores for the predictor variables used in true absence ensemble SDM for 

each species. 

3.4 DISCUSSION 

3.4.1 Influence of Data Type 

Our results highlight the importance of using true absence data to construct SDMs for terrestrial 

vegetation. Projected species distributions, model performance, and ranked variable importance 

from models built using pseudo-absence data deviated considerably from models that used true-

absence data. Pseudo-absence models also showed reduced TSS scores for two of the three 

species compared to models that used true absence data (see Table 3.3). Differences between true 

absence and pseudo-absence models suggest that true absence data are needed to reliably define 
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low suitability habitats that are not adequately sampled through the pseudo-absence selection 

process (Brotons and others 2004; Soberón and Nakamura 2009). 

Differences in projected habitat suitability in our pseudo-absence models were likely caused by 

the random allocation of pseudo-absence locations across a wider range of climate and terrain 

conditions compared to true absences. Since pseudo-absences are not definitive locations of 

absence, they do not accurately represent limiting environmental conditions, but provide a 

random sample of representative background data (Soberón and Nakamura 2009). Further, the 

possible allocation of pseudo-absence locations within the known distribution of a species could 

be reflected in model predictions as having lower suitability since the model will interpret truly 

suitable habitats as unsuitable. Another common SDM algorithm that uses pseudo-absence data 

(referred to as background data) called MAXENT (Phillips and others 2006) has also been 

shown to be highly sensitive to sampling bias caused in both presence and background data 

(Elith and others 2006; Elith and others 2011). Although true absence models are preferred as 

they provide information on low habitat suitability (Brotons and others 2004), the accessibility of 

presence-only data makes the use of pseudo-absences in SDMs very popular (Santini and others 

2021). The widespread use of pseudo-absence models (Santini and others 2021) is concerning 

because our results indicate that models built using pseudo-absence data yield different results 

that models built using true absence data. There is also no clear evidence to support best 

practices for pseudo-absence selection (Santini and others 2021), and as such the optimal number 

of pseudo-absence points has been found to vary considerably between modelling algorithms 

(Barbet‐Massin and others 2012). The spatial extent from which pseudo-absences are selected 

also poses potential problems, as too large or small an area can create models that are not 

biologically relevant (VanDerWal and others 2009). To facilitate the development of accurate, 
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reliable, and better performing models, we encourage the use of open data repositories to make 

true absence data more widely accessible. In addition, we suggest the use of comprehensive, 

systematic presence/absence data collection as part of botanical inventories (Saarela and others 

2017; Saarela and others 2020). 

Our results have important implications for predicting vegetation changes across northern 

ecotones, and conservation and land management decision-making (Guisan and others 2013). 

Recent work has stressed the importance of including SDM research in IUCN Red List 

developments (Breiner and others 2017), conservation of endemic and rare species (Marcer and 

others 2013; Wang and others 2015), and monitoring species invasion in protected areas 

(Pěknicová and Berchová-Bímová 2016; Barbet-Massin and others 2018). In all these cases, 

models built with pseudo-absence data that may not adequately describe species’ distributions 

and responses to change may contribute to ineffective or potentially harmful decisions 

(VanDerWal and others 2009). 

3.4.2 Tundra Shrub Response Dynamics 

Our finding that future habitat suitability differed among species suggests that shrubs will 

respond individualistically to climate warming based on resource requirements and physiological 

adaptations (Chapin III and others 1996). This is also evidenced by our observations of 

differences in variable importance between alder and dwarf shrubs (birch and lingonberry). The 

importance of precipitation seasonality in the SDM for alder shows that climate-driven 

expansion in this species will likely be mediated by soil moisture. Precipitation seasonality is 

linked to the temporal availability of water across the landscape, which, in conjunction with the 

physical properties of soil, influences a plant’s ability to retain moisture (O’Donnell and Ignizio 

2012; Renne and others 2019). This explanation is consistent with recent findings showing that 
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growth and productivity of alder in upslope areas is moisture-limited (Black and others 2021). 

Higher soil moisture has been associated with green alder proliferation (Tape and others 2006; 

Frost and Epstein 2014; Cameron and Lantz 2016) and increased vegetation growth (Elmendorf 

and others 2012; Ackerman and others 2017; Bjorkman and others 2018a). Reduced alder habitat 

suitability in parts of our study area exhibiting lower spring and summer precipitation compared 

to winter precipitation (Vincent and others 2015) is also consistent with these observations.  

Our analysis also suggests that physiological tolerances in birch and lingonberry will mediate 

how their ranges will respond to ongoing warming. The reduced importance of precipitation 

variables (precipitation seasonality and precipitation of the warmest quarter) in models for these 

species suggests that they will be less moisture-limited under a warmer climate (Figure 3.5). This 

finding is consistent with previous research showing the greater tolerance of birch and 

lingonberry to a range of environmental conditions (De Groot and others 1997; Taulavuori and 

others 2013). Several studies also show that these species can respond rapidly to increased 

temperature. Lingonberry exhibits increased shoot growth in response to rising temperature 

(Shevtsova and others 1997) and dwarf birch responds to experimental warming with earlier 

germination and higher recruitment (Milbau and others 2009). Dwarf birch is also capable of 

rapid secondary growth and reproduction under warming-induced increases in soil nutrient 

mineralization (Bret‐Harte and others 2002). 

Our results highlight the potential for high Arctic landscapes not currently dominated by alder, 

birch, lingonberry, and other woody vegetation to become climatically suitable for these species 

in the near future. This finding is consistent with recent remote sensing and field-based studies 

that have documented the proliferation of shrubs in tundra landscapes across the circumpolar 

(Tape and others 2006; Myers-Smith and others 2011; Jørgensen and others 2013; Lantz and 
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others 2013; Fraser and others 2014a; Frost and Epstein 2014; Martin and others 2017). Of 

particular note, greater increases in temperature across Banks Island compared to the Yukon 

North Slope, Tuktoyaktuk Coastlands, and Bathurst Peninsula (Supplementary Figure 8a) 

resulted in predictions of higher future suitability in this region. It is important to note that the 

shifts in habitat suitability predicted by our SDMs do not consider all ecological factors that can 

limit dispersal and recruitment. For example, small populations of birch and lingonberry on 

Banks Island (Aiken and others 2007) provide seed sources that could facilitate range expansion 

consistent with our SDMs. However, the absence of alder on Banks Island suggests that seed 

limitation will cause range expansion in this species to lag behind the presence of a suitable 

climate. Increased density of birch (Ropars and Boudreau 2012) and alder (Travers‐Smith and 

Lantz 2020) across the low and sub Arctic without significant range expansion also indicates that 

dispersal limitation can cause temporal lags between warming and range expansion (Svenning 

and Sandel 2013). The statistical outputs of SDMs based on observations of presences and 

absences also do not account for factors including microsite availability and predation that 

frequently limit recruitment (Soberón and Nakamura 2009).  

Differences in the projected response of alder, birch and lingonberry also highlight the 

importance of using species-based assessments of change to parameterize larger scale dynamic 

vegetation models. Dynamic vegetation models are commonplace in coupled earth system 

models and GCMs, and advances in the implementation and accuracy of species-based 

modelling will benefit climate projections (Bonan and others 2003; Quillet and others 2010). 

Parametrizing these models appropriately is important because terrestrial vegetation also impacts 

the climate system by influencing energy fluxes (ie. surface reflectance, carbon exchange) and 

surface conditions (ie. moisture, nutrients, temperature; Bonan and others 2003). Coupled earth 
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system models typically ignore dynamic trait-based vegetation response to climate in favour of 

static functional tolerances (Van Bodegom and others 2012; Wullschleger and others 2014). 

While simplification is necessary in global models, the use of broad vegetation functional types 

(grass, tree, cropland, etc.) may not accurately characterize vegetation change at high latitudes. 

Individual-based models (see: Kruse and others 2016) can be used to incorporate 

ecophysiological responses and species traits to determine responses to climate change. There 

are also promising advances in joint species distribution modelling, using a combination of 

traditional single-species SDM methods and ordination techniques to understand the interactions 

of multiple species from a community ecology perspective (Ovaskainen and Abrego 2020). 

These models can more directly account for interactions among species and can handle rare 

species better than traditional SDMs (Ovaskainen and Abrego 2020). With these advances in 

mind, it is still important to consider the data type used in modelling efforts. Our results show 

that data type can have a strong influence on models and as such, decisions regarding which 

parameterization data to use must be made carefully. 

3.5 CONCLUSIONS 

We used vegetation survey data across the Beaufort Delta region to model habitat suitability of 

three tundra shrubs to determine the effect that data type (true absences vs. pseudo-absences) has 

on model predictions and projected shifts in habitat suitability. Our analysis highlights the 

challenges of using pseudo-absence data to assess changes in habitat suitability or to identify 

environmental or climatic determinants of species’ distributions. We also observed distinct 

responses among shrub species to climate warming, indicating that physiological and ecological 

differences among species will mediate their responses. Additional modelling using best 

practices in SDM research to identify differences among species will enhance our ability to 
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predict feedbacks between climate warming and tundra vegetation change. We stress the 

importance of using true absence data whenever possible, particularly when making conservation 

or management decisions. To improve the accuracy and utility of SDMs in global change 

research, we suggest that presence/absence data be made more widely available using open data 

repositories.   
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4 Conclusion 

4.1 RESEARCH SUMMARY 

Global climate warming is driving rapid increases in vegetation productivity and changes to 

community structure and composition across northern latitudes (Jia and others 2003; Berner and 

others 2020; Chen and others 2021). Large changes to the geographic distributions of many plant 

species have also been associated with climate change (Pearson and Dawson 2003; Pearson and 

others 2013). These changes are concerning because the trend of increasing greening, driven 

largely by increasing dominance of shrubs (Mekonnen and others 2021a), influences positive 

feedbacks to climate warming (Sturm and others 2001), alters soil temperature (Frost and others 

2018), and negatively impacts wildlife such as caribou (Rickbeil and others 2018) while 

facilitating the range expansion of others such as moose (Tape and others 2016) and beaver 

(Jung and others 2016). The objective of my MSc thesis was to understand and quantify the 

response of tundra vegetation to recent climate warming in Beaufort Delta region of the western 

Canadian Arctic, and to assess how data type influences model performance and interpretation. 

To accomplish this I used machine learning analyses and species distribution modelling.  

In Chapter 2, I used field sampling of soils and vegetation and random forests modelling of 

trends in vegetation productivity measured using Landsat to investigate the response of tundra 

vegetation to climate warming. My analysis documented spatial heterogeneity in productivity 

trends (signalling variable intensities of tundra greening), which were the result of landscape-

scale terrain variables that mediate the effects of regional climate warming. Surficial geology and 

topography are among the best predictors of spatial patterns in tundra greening because they 

strongly influence soil conditions and moisture. My analysis also showed that the dominant 

vegetation is an important determinant of tundra productivity dynamics. Rapid greening was 
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associated with higher productivity in low shrub-dominated areas and stable productivity was 

more common in areas of barren ground or those already dominated by tall shrubs. Regional 

increases in low and tall shrub cover between 1984 and 2016, and the loss of less productive 

cover types (herbaceous, sparse) were also evident in land cover classifications created by Wang 

and others (2019). My analysis is significant because it identifies regional drivers of shifting 

vegetation productivity and provides insight into areas that may be particularly sensitive to 

climate warming. 

In Chapter 3, I ran a series of species distribution models (SDMs) to investigate the influence of 

data type (the use of true absences or pseudo-absences) on habitat suitability projections of three 

tundra shrubs: (1) green alder (Alnus viridis), (2) dwarf birch (Betula nana and B. glandulosa), 

and (3) lingonberry (Vaccinium vitis-idaea) under current and future climates. This analysis 

revealed notable differences in projected habitat suitability and driving variables between data 

types. While all models indicated overall increases in habitat suitability across the entire study 

area under the RCP8.5 climate scenario, differences in habitat suitability predictions and variable 

importance between data types indicated pseudo-absences had a notable impact on model 

outputs. These results lead me to recommend the use of true absence data when possible and 

demonstrates the significance of understanding the effects of model parameterization in terms of 

conservation and management decisions. My analysis also highlights the individualistic 

responses of different shrubs to climate warming driven by differences in physiological 

adaptations and environmental tolerances. This suggests that the use of broader plant functional 

type groupings are inherently missing essential information. My results are relevant to the global 

change and climate modelling research communities because changes in Arctic and subarctic 
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vegetation will drive large changes in energy fluxes and carbon storage (McGuire and others 

2006; Schaefer and others 2014).  

4.2 LIMITATIONS AND FUTURE RESEARCH 

My MSc research offers significant insight into changes in Low Arctic tundra vegetation, but 

there are several areas that would benefit from more data and additional investigation. In Chapter 

2, I used Landsat imagery to map trends in EVI across the Tuktoyaktuk Coastlands and Yukon 

North Slope. The 30-metre resolution of the Landsat archive constrained the grain at which I 

could map landscape heterogeneity. At this resolution, I found variability in topography to be 

important in driving EVI trends, but past research has highlighted that tundra vegetation exhibits 

heterogeneity at the sub-metre scale and suggests that processes at this scale may be critical to 

understanding the response of vegetation to microclimate variability (Assmann and others 2020; 

Myers-Smith and others 2020; Mekonnen and others 2021b). I recommend future research make 

use of finer resolution imagery, including remotely piloted aircraft systems (RPAS) that are 

capable of describing landscape patterns at the resolution of a few centimetres (Fraser and others 

2016). The greater affordability and accessibility of consumer-grade RPAS with multispectral 

capabilities (such as the DJI P4 Multispectral Drone) makes it possible to collect repeatable EVI 

(or other vegetation indices) data at the users discretion, an alternative to more expensive, 

coarser resolution, satellite imagery (Quickbird or WorldView). Random forests modelling using 

higher resolution data would also complement recent broad-scale analysis (Wang and Friedl 

2019; Berner and others 2020; Chen and others 2021). 

To strengthen higher resolution analyses, I suggest that future studies be paired with field data 

collection across a greater variety of habitat types. My research shows that vegetation type 

strongly influence changes in productivity because deciduous shrubs can respond rapidly to 
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changes in moisture, nutrients, and temperature. The field sampling that I conducted for this 

research focused on upland tundra terrain and did not adequately capture variability in lowland 

areas. To better understand the influence of soil moisture on vegetation productivity, additional 

sampling should be conducted in low-lying terrain (wetland complexes, water tracks, and lake 

margins). Additional sampling in the subarctic transition zone and at higher elevations in the 

Richardson Mountains would also provide more information on the role of elevation and 

heterogeneous topography, two factors we know to be important, but were not fully 

characterized during field sampling. 

Tundra vegetation change impacts wildlife habitat (Rickbeil and others 2018), surface energy 

balance, and carbon storage (McGuire and others 2006; Schaefer and others 2014), and so 

understanding the drivers of landscape scale variation in vegetation shifts is critical to accurately 

describe these relationships (Mekonnen and others 2021a). As such, I also recommend that my 

research be expanded to study the impacts of changing vegetation dynamics on the movement 

and habitat selection of mammals (caribou, moose, and muskox). Harvesting of local plants 

species is also of cultural importance to Inuvialuit and Gwich’in peoples (Alunik and Morrison 

2003; Parlee and others 2005) and an interdisciplinary study exploring the impacts of increasing 

shrub dominance on berry production would provide insight relevant to local communities. 

Species distribution models, habitat suitability models, and ecological niche models are a popular 

topic of current scientific research. New and innovative modelling techniques are in development 

that seek to improve upon current inadequacies inherent in common SDMs such as poor 

performance on rare species, integration of complex biological interactions, and scale-dependent 

ecological drivers (Guisan and Thuiller 2005; Zimmermann and others 2010; Keil and others 

2013). In Chapter 3, I showed how data used in model training has an influence on habitat 
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suitability predictions. Given the widespread use of pseudo-absences in research, I recommend 

that future work consider the impact of pseudo-absences in newer techniques such as joint 

species distribution modelling (Ovaskainen and Abrego 2020). Additionally, due to the 

differences I observed in projected species responses to warming, I suggest further development 

of individual-based models (see: Kruse and others 2016) to understand vegetation response to 

environmental and climatic change. These mechanistic models may provide more realistic 

interpretation of potential species’ distributions that account for individual variation in detail 

(DeAngelis and Mooij 2005), but require greater amounts of data to describe fundamental 

physiological and ecological responses to environmental gradients. Databases such as that of the 

Tundra Trait Team (Bjorkman and others 2018b) are leading the way on providing open access 

data on functional traits that may be implemented in these models. 

Repositories such as the Global Biodiversity Information System (GBIF) that provide free and 

open data are an essential resource for ecologists. GBIF, in particular, aggregates data from 

sources including herbariums, university collections, and citizen science projects (like iNaturalist 

or eBird) making such data easily accessible through browser-based tools (gbif.org) or packages 

for use in coding languages such as R, Python, or Ruby (Chamberlain and Boettiger 2017). The 

wide variety of survey methods and data formats makes aggregating data such as true absences, 

percent cover, or abundances difficult to implement at such a large scale. Current efforts such as 

the Group on Earth Observations Biodiversity Observation Network (Scholes and others 2012) 

are already seeking ways to coordinate large-scale biodiversity monitoring. Understanding the 

importance of high quality, descriptive data leads me to suggest and encourage further research 

into developing widely accessible data reporting standards. Having access to these data will drive 
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researchers to develop higher quality and more reliable models that will provide a better 

understanding of the impacts of climate change on vegetation dynamics across the globe. 

Long-term environmental monitoring is a crucial part of understanding the response of sensitive 

ecosystems to climate change and are important for implementation in global climate modelling 

and policy decision (Lovett and others 2007). Such monitoring provides unique insight into 

trends not visible over short periods of time or even developments not thought possible. 

Examples of such breakthroughs include early mentions of increasing atmospheric carbon 

dioxide (Keeling and others 1976) or the development of the Antarctic ozone hole (Farman and 

others 1985). I believe the increasing accessibility of high quality remote sensing data, open 

source data processing languages and GIS tools, and large datasets will continue to promote 

exploration and research into our changing environment.  
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Supplementary Information 

Supplementary Table 1. Description of surficial geology classes (from Fulton 1989) that cover 

more than 1% of the study area. 

Classification Description (quoted from Fulton 1989) 

Alluvial Stratified silt, sand, clay, and gravel; floodplain, delta and fan 

deposits; in places overlies and includes glaciofluvial deposits 

Fine colluvial Silt, clay, and fine sand; derived from weakly consolidated shale and 

siltstone substrate 

Glaciofluvial complex Sand and gravel and diamicton; undifferentiated ice contact stratified 

drift, and outwash; locally includes till and rock 

Glaciofluvial plain  Sand and gravel; deposited as outwash sheets, valley trains, and 

terrace deposits 

Lacustrine sand Sand and gravel; deposited as sheet sands, lags, and beaches 

Till blanket Thick and continuous till 

Till veneer Thin and discontinuous till; may include extensive areas of rock 

outcrop 
 

 

 

Supplementary Table 2. Description of land cover classes (from Wang and others 2019) that 

cover more than 1% of the study area.  

Classification Description (quoted from Wang and others 2019) 

Barren Less than 10% vegetation, mostly rock. 

Fen Hydrologically connected, sedge/grass dominated wetland. 

Herbaceous Area dominated by herbaceous land cover greater than 60% cover and 

tree/shrub cover less than 10%.  

Low shrub Area dominated by dense hemi-prostrate to low-erect shrubs (5-30 cm in 

height) with greater than 60% area coverage. Analogous to "prostrate 

dwarf-shrub" and primarily occurring in tundra areas. 

Sparsely vegetated 10-30% canopy coverage, any vegetation but typically 

herbaceous/bryophyte, with rock underneath. 

Tall shrub Area dominated by woody vegetation between 50 cm and 3 m tall and 

shrub canopy coverage greater than 60% coverage. Typically deciduous. 

Tussock tundra Herbaceous tundra dominated by Eriophorum vaginatum and other 

tussock-forming herbaceous species with over 60% coverage. 

Woodland Area dominated by trees taller than 3 m with between 30-60% canopy 

coverage. Frequently co-exists with peatlands and typically evergreen. 
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Supplementary Figure 1. Histogram of Enhanced Vegetation Index (EVI) trend values (grey) 

from Chen and others (2021) in the study area. Coloured portions represent the subset of data 

within each greening classification and show overlap between stable and moderate greening 

classes. The mean EVI trend is 2.24 x 10-3 EVI units/year and separation between moderate and 

high greening classifications is at one standard deviation above the mean (3.69 x 10-3 EVI 

units/year). 
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Supplementary Figure 2. Explanatory variables used in random forests modelling. A) Land 

cover data from Wang and others (2019); B-F) Derivatives of elevation data from Porter and 

others (2018). 
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Supplementary Figure 3. Receiver operating characteristic (ROC) curve with area under the 

curve (AUC) of 0.796 for the classification random forests model. 
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Supplementary Figure 4. True presence and absence locations for alder (Alnus viridis) from 

field sampling locations. These data represent the 5 km thinned data used to train the species 

distribution models. 
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Supplementary Figure 5. True presence and absence locations for birch (Betula nana and B. 

glandulosa) from field sampling locations. These data represent the 5 km thinned data used to 

train the species distribution models. 
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Supplementary Figure 6. True presence and absence locations for lingonberry (Vaccinium vitis-

idaea) from field sampling locations. These data represent the 5 km thinned data used to train the 

species distribution models. 
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Supplementary Figure 7. Hierarchical clustering of WorldClim bioclimatic variables at 30 

arcseconds resolution across study area. Red boxes show groups of variables with Pearson's r 

greater than 0.7 (distance less than 0.3). Refer to Table 3.1 for complete variable names. 
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Supplementary Figure 8. Maps of bioclimatic variables used in ensemble species distribution 

models under current (left column) and future (right column) climate projections.  
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Supplementary Figure 9. Maps of bioclimatic variables used in ensemble species distribution 

models under current (left column) and future (right column) climate projections. 
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Supplementary Figure 10. Maps of A) elevation, B) slope, and C) ruggedness (as vector 

ruggedness index) as used in the ensemble species distribution models. 
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Supplementary Figure 11. Histogram of habitat suitability predictions from true absence and 

pseudo-absence models across the entire study area for alder (Alnus viridis). 
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Supplementary Figure 12. Histogram of habitat suitability predictions from true absence and 

pseudo-absence models across the entire study area for birch (Betula nana and B. glandulosa). 
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Supplementary Figure 13. Histogram of habitat suitability predictions from true absence and 

pseudo-absence models across the entire study area for lingonberry (Vaccinium vitis-idaea). 
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