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ABSTRACT

Annual mean ground temperatures (Tg) decline northward from approximately �3.0°C in the boreal forest to �7.0°C
in dwarf-shrub tundra in the Tuktoyuktuk Coastlands and Anderson Plain, NWT, Canada. The latitudinal decrease in
Tg from forest to tundra is accompanied by an increase in the range of values measured in the central, tall-shrub tun-
dra zone. Field measurements from 124 sites across this ecotone indicate that in undisturbed terrain Tg may approach
0°C in the forest and �4°C in dwarf-shrub tundra. The greatest range of local variation in Tg (~7°C) was observed in
the tall-shrub transition zone. Undisturbed terrain units with relatively high Tg include riparian areas and slopes with
drifting snow, saturated soils in polygonal peatlands and areas near lakes. Across the region, the warmest permafrost
is associated with disturbances such as thaw slumps, drained lakes, areas burned by wildfires, drilling-mud sumps
and roadsides. Soil saturation following terrain subsidence may increase the latent heat content of the active layer,
while increases in snow depth decrease the rate of ground heat loss in autumn and winter. Such disturbances
increase freezeback duration and reduce the period of conductive ground cooling, resulting in higher Tg and, in
some cases, permafrost thaw. The field measurements reported here confirm that minimum Tg values in the upper-
most 10 m of permafrost have increased by ~2°C since the 1970s. The widespread occurrence of Tg above �3°C
indicates warm permafrost exists in disturbed and undisturbed settings across the transition from forest to tundra.
Copyright © 2017 Government of the Northwest Territories. Permafrost and Periglacial Processes © 2017 John
Wiley & Sons, Ltd.
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INTRODUCTION

Latitudinal tree line is a circumpolar ecotone close to the
southern boundary of continuous permafrost (Bliss and
Matveyeva, 1992; Timoney et al., 1992). In the rolling
uplands to the east of the lower-lying Mackenzie Delta,
an abrupt northward decline in mean annual ground
temperature occurs across the transition from spruce forest
to dwarf-shrub tundra in association with decreasing snow
depths and mean annual air temperatures (Mackay, 1967,
1974). Annual mean ground temperatures (Tg) are approx-
imately �3.0°C in the subarctic forest and �7.0°C in
dwarf-shrub tundra near the Beaufort Sea coast (Burn and

Kokelj, 2009; Palmer et al., 2012). Across this gradient, lo-
cal heterogeneity in soils, vegetation, topography, hydrol-
ogy and snow cover may produce variation in Tg on the
order of a few degrees centigrade across distances of a
few hundred metres (Mackay and MacKay, 1974; Smith,
1975). Higher Tg are encountered in riparian areas and wet-
lands, areas where snow accumulates due to topography or
tall shrubs, and natural and anthropogenic disturbances
(Burn et al., 2009; Kokelj et al., 2009, 2010, 2014; Lantz
et al., 2009; Morse et al., 2012). Despite this local
variation, the range of Tg in terrain across this ecological
transition has not been quantitatively assessed.

Regional and local variability in ground thermal condi-
tions may indicate permafrost sensitivity to changing
climate or surface disturbance and inform the design and
maintenance of northern infrastructure, including pipelines
and roads (e.g. Burgess and Smith, 2000; Darrow, 2011).
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The systematic studies of permafrost ground temperatures
summarised by J. R. Mackay in the 1970s provide us with
a regional baseline against which to evaluate present-day
conditions and climate-induced change (Mackay, 1974).
Here we present a large compilation of published and
unpublished data to quantitatively describe the variability
in ground temperatures across the transition from forest to
tundra in the Tuktoyaktuk Coastlands and Anderson Plain

physiographic regions east of the Mackenzie Delta
(Figure 1). We also compare these data with the regional
syntheses presented by Mackay (1974) and Burn and Kokelj
(2009). Across the study area, wind redistribution of snow
to vegetated topographic hollows, areas with tall shrubs or
riparian zones may lead to greater spatial variability in
surface ground temperatures than in the open-canopy boreal
forest, where snow cover is thicker and less heterogeneous.

Figure 1 Study area in the Tuktoyaktuk Coastlands and Anderson Plain, Northwest Territories, Canada. The figure shows the location of 124 ground temperature
monitoring sites reported in this study. Several sites are close to each other, and so the symbols overlap. The physiographic regions are from Rampton (1988).
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On this basis, we hypothesise that a northward decrease in
annual mean air temperatures and greater range of surface
conditions, primarily variation in snow cover, increase the
range in Tg through the transition from forest to tundra. To
test this hypothesis we summarised ground temperatures
from 124 sites in undisturbed terrain, and from natural and
anthropogenic disturbances in upland terrain east of the
Mackenzie Delta (Figure 1). To investigate the influence
of winter surface conditions on variation in near-surface
thermal regime across this region, we also examined rela-
tionships between the duration of active-layer freezeback
and Tg. Our synthesis quantifies local and regional variabil-
ity in permafrost ground temperatures in this ecologically
and economically important region of the Canadian North.

STUDY AREA

This study is focused on the transition from forest to tundra
within the western part of the Tuktoyaktuk Coastland and
Anderson Plain physiographic regions (Figure 1) (Mackay,
1963; Rampton, 1988). The region was glaciated in the Late
Wisconsinan and surficial materials are predominantly fine-
grained and stony tills (Duk-Rodkin and Lemmen, 2000).
Rolling, ice-rich hummocky moraine is interspersed with
lacustrine plains that are locally dominant in the central and
northern part of the study area (Aylsworth et al., 2000). These
extensive, more poorly drained areas typically contain polyg-
onal terrain and organic soils (Kokelj et al., 2014; Steedman
et al., 2016). The entire study area is lake-rich and water
bodies with depths that exceed about two-thirds of the winter
ice thickness are underlain by taliks (Burn, 2002). Drainage of
lakes causes permafrost to aggrade in the lake sediments
(Mackay, 1992), and provides nutrient-rich soil surfaces for
colonisation by shrubs (Marsh et al., 2009).
Terrestrial environments throughout the study area are

underlain by thick, ice-rich permafrost (Burn and Kokelj,
2009). The depth of permafrost increases from about
100 m in the subarctic forest near Inuvik to more than
500 m in the northern part of the study area (Mackay,
1967; Judge et al., 1979). Near-surface segregated ice is
common in the upper 2–3 m of the ground, above the early
Holocene thaw unconformity (Burn, 1997; Kokelj and
Burn, 2003). Ice wedges occur in organic deposits through-
out the region, but wedge ice is only common north of
the tall-shrub transition zone in tills (Mackay, 2000;
Kokelj et al., 2014).
The region is characterised by a steep climatic gradient,

with colder and drier conditions close to the coast and
warmer and wetter conditions inland (Burn and Kokelj,
2009). Mean annual air temperatures for 1981–2010 at
Tuktoyaktuk and Inuvik were �10.1 and �8.2°C, respec-
tively (Environment Canada, 2015). The northern part of
the study area receives less precipitation than inland areas:
annual snowfall for 1981–2010 at Inuvik was 158.6 cm,
and at Tuktoyaktuk was 103.1 cm. The vegetation in the
study area transitions from open-canopy spruce forest in
the southern part of the study area to dwarf-shrub tundra

near the Beaufort Sea coast (Figure 1; Supplementary
Figure S1;) (Timoney et al., 1992). The central part of the
study area is dominated by a mosaic of tall-shrub, dwarf-
shrub, and graminoid tundra and is referred to throughout
the paper as the tall-shrub transition zone (Lantz et al.,
2010). Regional variation in ground temperatures is
strongly associated with these latitudinal gradients in
climate and vegetation structure (Burn and Kokelj, 2009;
Palmer et al., 2012).

Rising air temperatures since the 1970s have been associ-
ated with an increase in permafrost temperatures (Smith et
al., 2005; Burn and Kokelj, 2009; Burn and Zhang, 2010),
thermokarst disturbance (Lantz and Kokelj, 2008), and the
increased size and abundance of tall shrubs (Lantz et al.,
2013; Fraser et al., 2014; Moffatt et al., 2016). The study
region includes the communities of Inuvik and Tuktoyaktuk,
a growing network of roads, and numerous historical
hydrocarbon exploration staging areas and drilling-mud
sumps, which rely on permafrost as a foundation or for
containment (Burn and Kokelj, 2009; Kokelj et al., 2010).

METHODS

This paper reports ground temperatures at 124 sites with
mineral and organic soils in disturbed and undisturbed
environments from the subarctic forest through tall-shrub
tundra and dwarf-shrub tundra in the Tuktoyakuk
Coastlands and Anderson Plain (Figure 1; Table 1). Site
attributes and data sources are provided in Supplementary
Table S1, and photographs and descriptions of the main site
types are shown in Supplementary Figure S1. We stratified
our sites by ecotype (forest, tall shrub and dwarf shrub),
disturbance status and depth of temperature measurement.
Undisturbed sites included hilltops, slopes, valley bottoms,
riparian areas and polygonal peatlands. Natural disturbances
included areas burned by wildfire, retrogressive thaw slumps
and drained, revegetated lake-beds (Table 1). Anthropogenic
disturbances included hydrocarbon drilling-mud sumps,
aggregate quarries and roadsides. These perturbations
described in Table 1 had a range of impacts, including:
the destruction of organic material, alteration of drainage,
increased soil moisture, and elevated snow cover due to
changes in topography or shrub proliferation. The impact
of surface disturbance on temperatures at depth is related
to the intensity, spatial footprint and duration of the
perturbation, with recent terrain disturbances resulting in
disequilibrium between surface and subsurface conditions.

Installation techniques and measurement equipment
varied among the different sites. Near-surface ground
temperatures were typically reported at depths of 0.05 m
(Ts) and 1.0 m (Tns) below the ground surface. Sensors at
1.0 m depth were usually within permafrost in undisturbed
terrain, but active-layer thicknesses commonly exceeded
this depth at disturbed sites (Mackay, 1995; Kokelj et al.,
2010). All data reported in this summary are from 2002 to
2015 and approximately 20 per cent of the sites have
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multiple years of data (Supplementary Table S1). Measure-
ments were made every 2–4 h with thermistors (model
TMC6-HA, Onset Computer Corporation, Bourne, MA,
USA) that were attached to two- or four-channel Onset
HOBO data loggers (typically models H08–006-04, U23–
001, U12–008, U10–003 or U12–003). These temperature
sensors have a minimum range of �20 to 70°C, an accuracy
of �0.53°C or better and a precision of �0.41°C or better at
0°C. Since we report mean ground temperatures for individ-
ual years, we refer to this estimate as an annual mean ground
temperature (Palmer et al., 2012). Annual mean ground tem-
peratures (Tg) were based on Tns and calculated using obser-
vations from 1 September to 31 August. Years with more
than 10 days of missing data were excluded from the
analyses.
Daily mean ground temperatures were used to estimate the

duration of active-layer freezeback for all sites and in years
with adequate data. The period of active-layer freezeback
was defined as from the date that Ts dropped below 0°C for
three consecutive days until the date, later, when Tns declined
and indicated closure of the zero curtain. The temperature
drop for Tns was identified as an abrupt decrease of more than
0.5°C from a stable freezing value. At some sites, the
freezeback period extended through the entire winter and
ended when Ts rose above 0°C.
At 48 of the 124 sites, deeper ground temperatures (Td)

were compiled from a range of environments across the re-
gion. Td values are reported from a depth of at least 5 m be-
low the ground surface, typically at 10-m depth, where
annual variation in ground temperature is <0.5°C. If data
were not available at 10-m depth, we estimated the

temperature by linear interpolation between the temperature
measurements that bracket the 10-m depth. Most Td values
reported in this paper are from ground temperature monitor-
ing conducted by the Department of Transportation of the
Government of the Northwest Territories along the Inuvik
to Tuktoyaktuk Highway alignment, and Indigenous and
Northern Affairs Canada and Natural Resources Canada
data that were collected along the proposed Mackenzie
Gas Pipeline corridor (Kokelj et al., 2009; Stevens et al.,
2011), and regulatory monitoring of drilling-mud sumps
and adjacent undisturbed terrain. Measurements by the
Department of Transportation are manual readings obtained
biannually before construction of the Inuvik to Tuktoyaktuk
Highway. At sites instrumented by Indigenous and Northern
Affairs Canada, and Natural Resources Canada, ground
temperatures were recorded at 8-h intervals using eight-
channel data loggers (Branker XR-420-T8). These thermis-
tors (YSI 46004) have an accuracy of �0.1°C or better, and
a precision of �0.01°C or better at 0°C.

To show the range of snow conditions across the study
region we compiled late winter snow survey data obtained
between 2004 and 2015. Site means were calculated for
each year of available data.

RESULTS

Regional Variation in Ground Temperatures

The lowest Tg at measurement sites decline northward
across the transition from spruce forest to dwarf-shrub

Table 1 Study area environments and general site conditions.

Site type Biological conditions Physical conditions References

Undisturbed — — —
Flat terrain Forest, tall-shrub, dwarf-shrub

tundra
Variable snow, vegetation
and hydrology. Fine-grained
mineral to organic soils

Smith et al. (2005), Burn and
Kokelj (2009), Palmer et al.
(2012)

Valleys, side slopes and
riparian bottoms

Side slopes and bottoms High snow depths Stevens et al. (2011)

Disturbed — — —
Burned Dense tall-shrub Removal of O-layer,

increased thaw depths,
variable soil organic
conditions

Mackay (1995), Palmer et al.
(2012)

Drained lake Dense tall-shrub Mineral soils, moderately
drained, medium to high
snow depths

Mackay and Burn (2002),
Marsh et al. (2009)

Thaw slump Dense tall-shrub Removal of O-layer, mineral
soils, modified topography,
increased snow and thaw
depths

Kokelj et al. (2009), Lantz
et al. (2009)

Anthropogenic disturbances
(sumps, quarries, roadside
sites)

Unvegetated to dense-tall
shrub

Removal of O-layer,
modified topography,
impeded drainage, increased
snow and thaw depths

Mackay et al. (1970), Burn
et al. (2009), Kokelj et al.
(2010)
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tundra (Figure 2a). The lowest Tg values are reasonably
bounded by a curve derived from the regional ground
temperature map for 2003–07 presented by Burn and Kokelj

(2009). The lowest Tns in the forest was about �3.5°C and
decreased to about �8°C in the dwarf-shrub tundra close
to the coast (Figure 2a). Td falls within the range of Tns

Figure 2 Ground temperature and snow conditions across the transition from forest to tundra, Tuktoyaktuk Coastlands and Anderson Plain. (a) Annual mean
ground temperatures at 124 sites in disturbed and undisturbed terrain from forest to dwarf-shrub tundra. The triangles indicate sites with near-surface tem-
peratures (1 m) (Tns) and the crosses indicate sites with data from 10-m depth. Vertical bars show the range of annual mean values when two or more years of
data were available and the point along the bars shows the average annual mean value with three or more years of data. The dashed line approximates the
highest mean ground temperatures reported from undisturbed terrain. The upper solid line shows the lowest mean ground temperatures interpolated from a
regional map based on data from 2003 to 2007 compiled by Burn and Kokelj (2009). The bottom line shows lowest mean ground temperatures from a similar
regional map from the 1960s and 1970s (Mackay, 1974), in addition to data for the Inuvik region from Brown (1966) and Mackay (1967). (b) Mean snow
thickness at 70 sites in disturbed and undisturbed terrain from forest to dwarf-shrub tundra. Mean values are plotted for each site. Vertical bars show the range
of annual mean values when two or more years of data were available and the point along the bar shows the average mean value with three or more years of
data. Data are from 2004 to 2015. Disturbed and undisturbed sites are distinguished using the symbols in (a).
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and minimum values decrease northward from about
�2.0°C in forest near Inuvik to �7.0°C in the dwarf-shrub
tundra near the Beaufort Sea coast (Figure 2a).
Annual mean Tns from all environments sampled varied

by 4.0–5.0°C in the forest and dwarf-shrub tundra zones
and by at least 7.0°C in the tall-shrub tundra (Figure 2a).
Most of the sites across the region have Tg higher than those
indicated by the isocline in Burn and Kokelj (2009, figure
11), although there is a notable cluster of Tns and Td at the
southern extent of the tall-shrub tundra zone with lower
ground temperatures. The hatched line in Figure 2a shows
that the upper range of ground temperatures from undis-
turbed terrain is 3–6°C higher than the lowest mean temper-
atures and the greatest range of variation is in the tall-shrub
zone. The highest Tg are about 0°C in undisturbed forested
areas, �1 to �2°C in the tall-shrub tundra, and �2 to
�4°C in the dwarf-shrub tundra. The highest Td reported
in dwarf-shrub tundra is typically a few degrees centigrade
lower than the highest Tns (Figure 2a). Undisturbed terrain
with high Tg includes riparian areas, slopes with drifting
snow, saturated organic soils in polygonal terrain and areas
proximal to lakes.
The range of snow thicknesses also increases northwards

across the transition from forest to tundra. Figure 2b shows
that snow thicknesses in the forest are typically greater, but
less variable, than on the tundra. Tundra sites typically have
thin snow cover, but areas with upright shrubs, and natural
hollows or infrastructure such as road embankments can ac-
cumulate snow drifts, causing site-specific snow thicknesses

and the range of local variability to exceed those in the
forest.

The warmest permafrost across the region was associated
with natural and anthropogenic disturbances, where Tg was
commonly above �2°C. In these environments, distur-
bances to the surface organic cover, a deep snow pack and
saturated soils may result in Tns above 0°C, even in the
tall-shrub transition zone (Lantz et al., 2009; Kokelj et al.,
2010). Disturbances such as drilling-mud sumps or thaw
slumps in the dwarf-shrub tundra that did not lead to in-
creases in snow accumulation had lower ground tempera-
tures. Natural disturbances such as fire, thaw slumps or
drained lakes modify surface conditions, which over vary-
ing time scales shift towards the local undisturbed condition
(Mackay, 1995). However, disturbances such as road em-
bankments or sumps represent a longer term alteration of
surface boundary conditions and departure from local,
undisturbed ground temperatures (Kokelj et al., 2010; Gill
et al., 2014).

Active-Layer freezeback and Tns

The duration of active-layer freezeback showed a positive,
non-linear association with Tns for all sites with available
data from the study area (Figure 3). Most of the undisturbed
sites typically refreeze within 75 days of sub-zero Ts and
have Tg that range from about �3.0 to �7.0°C. The large
range in Tg where the active layer rapidly freezes can be at-
tributed to inter-annual variation in snow and air tempera-
tures, and to differences in soil thermal properties and the
rates and magnitude of snow accumulation throughout win-
ter among sites. For example, the duration of freezeback at
undisturbed forest sites is only slightly longer than that at
the tundra sites, but Tg in the forest is several degrees higher
than on the tundra (Figure 3). This difference is caused by
the deeper snow in mid- to late winter at forest and many
transition zone sites, which reduces ground heat loss
(Figure 2b) (Palmer et al., 2012).

The high variability in snow conditions among sites con-
tributes to the greater range of Tg in the tall-shrub transition
zone (Figure 3). At sites where freezeback exceeds 80–
90 days, regardless of vegetation zone, Tg is typically above
�3°C, and increases gradually with freezeback duration
(Figure 3). Sites with a prolonged freezeback typically have
deep snow, thick active layers and saturated soils (Table 1)
(Burn et al., 2009; Kokelj et al., 2009, 2010, 2014). Envi-
ronments with these conditions include thaw slump scars,
revegetated drained lake basins, some ice-wedge troughs,
drilling-mud sumps and road embankments (Table 1). Since
the extended freezeback duration limits the period of con-
ductive heat loss from permafrost, some disturbed sites
may have Tg that approach or exceed 0°C.

Climate Change and Ground Temperatures

The regional mean ground temperature curve based on Burn
and Kokelj (2009, figure 11) approximates a lower

Figure 3 Scatter plot of Tns versus the duration of freezeback for all sites
and all years with available data. Sites are symbolised according to ecotype
and disturbance status. The linear relationship between Tns and log-trans-
formed duration of freezeback is y = 9.05(ln x) � 20.59; r2 = 0.70; n = 98.
The slope and y-intercept are significant at P < 0.001 (Slope: t1,97 = 14.84;
Intercept: F1,97 = 220.29).
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boundary for present-day Tg across the forest–tundra transi-
tion (Figure 2a). The few recent ground temperature obser-
vations below this upper line, and the fact that all Td values
were well above the bottom curve, which approximates the
regional ground temperatures for the late 1960s and early
1970s (Brown, 1966; Mackay, 1967, 1974), confirm that
Tg values have increased by about 2°C since the 1970s
(Burn & Zhang, 2010). The presence of warm, undisturbed
permafrost throughout the transition from forest to tundra
highlights the thermal sensitivity of terrain in this region
to disturbance or climate change.

DISCUSSION

There is a northward decrease in minimum Tg across the
transition from subarctic forest to dwarf-shrub tundra
(Figure 2a). This regional ground temperature gradient is as-
sociated with an increased range of Tg through the tall-shrub
transition zone. The background variation in soils, vegeta-
tion, snow conditions and proximity to water bodies may
account for up to about 5°C of local variation in mean
ground temperatures in the study region (Figure 2) (Kanigan
et al., 2008; Burn and Zhang, 2009). In the tall-shrub and
dwarf-shrub tundra, deep snow on hillslopes or areas with
tall shrubs and elevated snow and soil moisture in riparian
zones may result in Tg several degrees higher than in sur-
rounding terrain (Kokelj et al., 2014). As a result, many
low Arctic environments north of the tree line have ground
thermal conditions that are comparable with those in the bo-
real forest (Figures 2a and 3).
Figures 2(a) and 3 show that terrain disturbance across

the study area can lead to permafrost degradation. Removal
of surface organic cover, development of a dense shrub
cover, or topographic changes that alter snow accumulation
or soil moisture can modify soil thermal properties, surface
conditions and ground heat flux. Such disturbances may
prolong the duration of active-layer freezeback and decrease
the annual period of conductive ground cooling (Figure 3)
(Romanovsky and Osterkamp, 1995; Kokelj et al., 2010,
2014). Many natural disturbances revert back to an undis-
turbed condition, albeit over varying time scales (Mackay,
1970, 1995; Mackay and Burn, 2002; Lantz et al., 2009).
However, anthropogenic disturbances such as road embank-
ments and sumps can result in the longer term alteration of
soil, drainage and snow conditions. While disturbance and
localised alteration of surface conditions can significantly
increase Tns, in dwarf-shrub tundra environments the ther-
mal effects are typically dampened with depth due to the in-
fluence of lateral heat transfer with the surrounding cold
permafrost (Figure 2a).
The wide range of surface boundary conditions and

ground temperatures encountered across the transition from
forest to tundra (Figure 2) suggests that permafrost in this
ecotone is thermally sensitive to further disturbances or cli-
mate change. Our data also suggest that an increase in natu-
ral or anthropogenic disturbance or a northward shift in the

tall-shrub tundra zone will compound climate-driven in-
creases in low Arctic ground temperatures. While at most
undisturbed sites across this region Tg values remain several
degrees below 0°C, patches of the terrain have ‘warm’ per-
mafrost and surface disturbances and thick snow can result
in thermal degradation (Figure 2a). Together, these observa-
tions are of relevance to the planning and maintenance of in-
frastructure that utilises permafrost as a foundation (Hayley
and Horne, 2008) or containment medium (Kokelj et al.,
2010), and for anticipating the thermal consequences of
future disturbance, climate warming and regional shrub
proliferation (Lantz et al., 2013; Moffat et al., 2016).

CONCLUSIONS

Based on the analyses and interpretation of this regional
ground temperature dataset we draw the following
conclusions:

1. The northward decrease in minimum Tg from about�3.0
to �7.0°C across the transition from subarctic forest to
dwarf-shrub tundra is accompanied by an increase in
the range of Tg in the tall-shrub transition zone.

2. The greater range in Tg through the tall-shrub tundra is
associated with areas of deep snow or areas of increased
snow and soil moisture. In these locations Tg can be sev-
eral degrees higher than in surrounding terrain and sim-
ilar to conditions in the forest.

3. Natural or anthropogenic disturbances that alter snow
cover or soil thermal properties can prolong active-
layer freezeback and increase Tns, causing permafrost
thaw at sites across the transition from forest to tundra.

4. Annual mean ground temperatures at undisturbed sites in
the study area have increased by as much as 2°C since
the 1970s due to climate warming.
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