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Global Spatial-Temporal Variability in Terrestrial
Productivity and Phenology Regimes between 2000
and 2012

Shanley D. Thompson,* Trisalyn A. Nelson, Nicholas C. Coops,:E Michael A. Wulder ®,°
and Trevor C. Lantz!

*Department of Geography, University of Victoria
1School of Geographical Sciences and Urban Planning, Arizona State University
?Department of Forest Resources Management, University of British Columbia
SCanadian Forest Service (Pacific Forestry Centre) , Natural Resources Canada
TDepartment of Environmental Studies, University of Victoria

The productivity and phenology of vegetation are spatially and temporally variable ecosystem functions. Moni-
toring spatial-temporal patterns in these functions can improve our understanding of global change and natural
ecosystem variability and inform management actions. Researchers typically focus on temporal changes within
or among static regions and omit dynamics of spatial configuration. Our goal was to assess global spatial-tempo-
ral variability in productivity and phenology regimes between 2000 and 2012 using a temporally dynamic func-
tional type classification. Fourteen functional types were defined for each year by clustering the annual sum
and annual variability (seasonality) of the fraction of photosynthetically active radiation (fPAR)—a biophysi-
cal proxy for vegetation greenness or productivity—from the Moderate Resolution Imaging Spectrometer
(MODIS). The fourteen functional types ranged from tundra (low cumulative fPAR and highly seasonal) to
tropical forests (high cumulative fPAR and low seasonality). Variability in the mean of the fPAR metrics and
in two spatial pattern metrics was assessed for each functional type. Many pixels changed from one cluster to
another then back again, suggesting considerable short-term variability. Temporal variability in the mean of
the fPAR metrics was relatively low, with changes instead primarily manifested in spatial pattern. Spatial
pattern was most variable within tundra, grasslands, shrublands, and savannas. A dynamic classification
demonstrated the variability in spatial patterns of primary productivity and can be used for future monitoring.
Key Words: ecosystem function, fPAR, MODIS, monitoring, regionalization.
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La productividad y la fenologia de la vegetacién son funciones ecosistémicas variables espacial y tempora-
Imente. El monitoreo de los patrones espacio—temporales de estas funciones puede mejorar nuestra comprensién
del cambio global y de la variabilidad ecosistémica natural, e informar las acciones de manejo. Tipicamente, los
investigadores se enfocan sobre los cambios temporales dentro o entre regiones estaticas y omiten la dindmica
de la configuracién espacial. Nuestro propdsito fue evaluar la variabilidad espacio—temporal en perspectiva
global, en términos de regimenes de productividad y fenologia entre el 2000 y el 2012 usando un tipo de
clasificacién funcional temporalmente dindmica. Catorce tipos funcionales se definieron para cada ano aglo-
merando el monto total y la variabilidad anual (estacionalidad) de la fraccién de radiacién fotosintéticamente
activa (fPAR)—un proxy biofisico para el verdor o productividad de la vegetacion—del Espectrémetro de
Imégenes de Resolucién Moderada (MODIS). Los catorce tipos funcionales estuvieron dentro del dmbito de la
tundra (baja fPAR acumulativa y altamente estacional), hasta los bosques tropicales (alta fPAR acumulativa y
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baja estacionalidad). Se evalud la variabilidad en la media de las medidas de la fPAR y en las medidas de dos
patrones espaciales para cada tipo funcional. Muchos pixeles cambiaron de un agrupamiento a otro, una y otra
vez, lo cual sugiere considerable variabilidad de corto término. La variabilidad temporal en la media de la med-
ida de la fPAR fue relativamente baja, sustituida con cambios manifiestos primariamente en el patrén espacial.
El patrén espacial tuvo su médxima variabilidad dentro de la tundra, los pastizales, zonas arbustivas y sabanas.
Una clasificacién dindmica demostré la variabilidad en los patrones espaciales de productividad primaria y
puede usarse para monitoreo futuro. Palabras clave: funcion ecosistémica, fPAR, MODIS, monitoreo,

regionalizacion.

uman well-being depends on ecosystem services
Hsuch as the provision of natural resources, cli-

mate regulation, water purification, and cul-
tural and spiritual benefits (Millennium Ecosystem
Assessment 2005). Net primary productivity (NPP),
the rate of photosynthetic production per unit area, is a
basic ecosystem function that supports all other ecosys-
tem services (Kremen 2005; Carpenter et al. 2009;
Andrew et al. 2015). For instance, the extraction of
timber resources and the production of oxygen through
photosynthesis are both tied to primary productivity.
Although the exact nature of the relationship is con-
tested, primary productivity is also one of the most
widely recognized drivers of global patterns in biodiver-
sity (Wright 1983; Pianka 1966; Field et al. 2008;
Whittaker 2010). Vegetation phenology, the timing of
developmental stages of plant life such as green-up,
flowering, senescence, and length of growing season, is
also a key functional trait of ecosystems that influences
ecosystem processes such as pollination, carbon, water,
and nutrient cycling (Morisette et al. 2009; Richardson
et al. 2013). Planning conservation and sustainable
development to ensure the continued provision of eco-
system services requires that these basic functions and
services are spatially quantified and monitored (Braat
and de Groot 2012; Cabello et al. 2012).

Both primary productivity and phenology exhibit
considerable variability across space and time. Conti-
nental and global gradients in productivity and phenol-
ogy reflect spatial variation in climate, especially
temperature and precipitation (Polis 1999; Kimball
2014; Richardson et al. 2013). Landscape and regional
variability in these processes might also reflect finer
scale abiotic processes and the response of species or
functional groups to these patterns (Hansen et al. 2000
Schongart et al. 2002; Baeza et al. 2010; Diez et al.
2012). The productivity and phenology of a given
region or ecosystem could fluctuate as a result of inter-
annual climatic variability (Mohamed et al. 2004; Piao
et al. 20006; Zeng et al. 2013). As the global climate
warms (Intergovernmental Panel on Climate Change
2014), persistent changes in primary productivity and

vegetation phenology have also been identified. Specifi-
cally, in many areas, an increase in NPP and growing
season length have been observed over the long term,
concomitant with increasing global mean temperature
over the same time period (Boisvenue and Running
2006; Xu et al. 2013; Keenan et al. 2014; Buitenwerf,
Rose, and Higgins 2015; Sitch et al. 2015).

Monitoring spatial and temporal variability of eco-
system functions, such as productivity and phenology,
with remote sensing can be used to assess changes in
the delivery of ecosystem services (Volante et al.
2012; Andrew, Wulder, and Nelson 2014) and biodi-
versity (Coops et al. 2008). Spatial-temporal trends in
productivity and phenology can also inform manage-
ment and conservation (Crabtree et al. 2009; Cabello
et al. 2012) and climate change science (Botta et al.
2000; Bonan et al. 2002; Nelson et al. 2014; Holmes
et al. 2015). At global scales, quantitative, highly
repeatable, and spatially comprehensive information
regarding above-ground NPP and phenology can only
be derived from remotely sensed data that are spatially
and temporally aggregated and are representative of
whole ecosystems or biomes (Boisvenue and Running

2006; White and Nemani 2006; Morisette et al. 2009;
Ustin and Gamon 2010; Alcaraz-Segura et al. 2013).
Such data have been used in numerous studies to assess
recent global changes in productivity (e.g., Zhao and
Running 2010; De Jong et al. 2012; De Jong et al.
2013; Mao et al. 2013) and phenology (e.g., Jeong
et al. 2011; Eastman et al. 2013).

These types of global studies typically report changes
over time in the magnitude of productivity (e.g., mean
annual greenness) or the timing of phenological events
(e.g., mean growing season length). Although some
have used explicit spatial-temporal methods to detect
extreme events in remotely sensed indicators of primary
productivity (e.g., Zscheischler et al. 2013), most focus
on the temporal aspect, with spatial variation in these
changes simply assessed along latitudinal gradients or
among static regions such as biomes, countries, or conti-
nents. Monitoring more nuanced variability can be
equally as important as detecting extreme events, and
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the use of static regions to assess this variability is limit-
ing because ecological boundaries are dynamic and
respond to intra- and interannual changes in climate.
The spatial configuration of vegetation can also influ-
ence ecosystem services related to the flow of water,
soil, nutrients, and organisms such as pollination and
carbon storage (Mitchell et al. 2013). For instance,
flowering and fruiting in fragmented landscapes might
be earlier and more productive at edges due to altered
abiotic conditions (Herrerfas-Diego et al. 2006). Such
changes in phenology can affect plant reproduction and
pollination (Burgess et al. 2006). As such, analyses that
integrate the dynamic nature of ecosystems could high-
light important spatial-temporal variation and change.
As an example, as ecosystem conditions change, neigh-
boring units will become more or less similar, but this
variability is not reflected under a system of static
boundaries (Handcock and Csillag 2002). A regionali-
zation methodology that is dynamic allows the possibil-
ity of detecting spatial shifts in environmental
conditions (Reygondeau et al. 2013). The goal of this
research was to assess spatial-temporal variability in
vegetation productivity and phenology across the globe
between 2000 and 2012, at three-year intervals, using a
classification based on dynamic ecosystem functional
types. Ecosystem functional types provide a meaningful
framework for understanding, monitoring, assessing,
and predicting changes to ecosystems and ecosystem
services (Paruelo, Jobbdgy, and Sala 2001; lvits et al.
2013). To meet our goal, we used cluster analysis to
classify and map remotely sensed proxies for productiv-
ity and phenology into functional types for five years
from 2000 and 2012. Previous researchers have used
remotely sensed proxies of primary productivity and
phenology to delineate ecosystem functional types at
regional (Paruelo, Jobbigy, and Sala 2001; Alcaraz-
Segura et al. 2013) and global scales (Ivits et al. 2013).
Our analysis is unique in that we allow mapped bound-
aries of the functional types to change through time,
rather than using a static classification, and then focus
our analysis on the change in spatial pattern.

Methods
Data

Classification of ecosystem functional types in this
study was based on remotely sensed estimates of the
fraction of photosynthetically active radiation (fPAR)
absorbed by vegetation. Whereas vegetation indexes

such as the Normalized Difference Vegetation Index
(NDVI) are composite measures of leaf chlorophyll
content, leaf area, canopy cover, and structure, fPAR
is an intrinsic biophysical variable that directly influ-
ences primary productivity (Myneni et al. 2002;
Glenn et al. 2008; Huete et al. 2011). fPAR depends
on vegetation type and structure and is commonly
used in the estimation of ecosystem productivity and
other biogeochemical cycles (Myneni et al. 2002).
Values of fPAR range from zero to one; larger values
indicate high vegetation greenness and productivity,
whereas values approaching zero are indicative of
more sparsely vegetated areas with low productivity
(Myneni et al. 2002). For this study, fPAR data were
obtained from the earth observing satellite Moderate
Resolution Imaging Spectrometer (MODIS). Specifi-
cally, we used MODIS eight-day composites with a
spatial resolution of 0.05°, or approximately 5.5 km at
the equator (MODI15A2, V5, Climate Modeling
Grid). MODIS terra data are collected daily with an
equatorial crossing time of approximately 10:30 a.m.;
the eight-day composite products available for down-
load represent the best (least cloud contaminated)
value over that eight-day period for each pixel. The
forty-six composite images available in any given year
were compiled for the years 2000, 2003, 2006, 2009,
and 2012 to capture the range of fPAR variability
within this time period.

To classify ecosystem functional types, two fPAR
metrics were calculated for each of the five years of
interest: total annual sum (fPAR,,,,) and the annual
coefficient of variation (fPAR.,). The total annual
sum is representative of annual net primary produc-
tivity (Goward, Tucker, and Dye 1985). Higher val-
ues are indicative of areas that are productive
throughout the year or that are highly productive for
the growing season. As the maximum fPAR value
for any pixel is one and the number of images used
per year was forty-six, fPAR . in theory ranges
from zero to forty-six. Excluding nonvegetated areas
for which MODIS fPAR data are absent, our calcu-
lated values of fPAR,, ranged from 0.1 to 42 for
the years assessed. The annual coefficient of varia-
tion of fPAR (fPAR.,) quantifies the seasonality of
primary productivity and represents phenological
variation. High variability in fPAR (or NDVI)
occurs where the climate exhibits extremes within a
year and where vegetation is highly temperature or
precipitation limited, such as in annual and desert
grasslands or arctic and subarctic environments, or
where there are cyclical agricultural practices in
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place (Reed et al. 1994; Coops et al. 2008; Coops,
Wulder, and Iwanicka 2009). Values of fPAR., in

our data set ranged from O to 6.7.

Classification and Mapping of Functional Types

A quantitative regionalization approach was used
to classify and map functional types. The two fPAR
metrics, fPAR,,, and fPAR.,, from each of the five
target years were used in a cluster analysis to gener-
ate a map of global ecosystem functional types.
Cluster analysis is an unsupervised classification
technique that partitions data into natural groups
based on (dis)similarity (Jain, Murty, and Flynn
1999; Jain 2010).We applied a nonspatial clustering
to the fPAR data that did not enforce spatial conti-
guity in the classification. Specifically, we used the
two-step clustering method in the statistical soft-
ware SPSS (Version 22, IBM Corp., Armonk, NY,
USA) because it can accommodate very large data
sets. This method combines both partitional and
hierarchical clustering approaches. First, raw data
points are partitioned into a set of preclusters using
an approach called a cluster feature (CF) tree
(Zhang, Ramakrishnan, and Livny 1996) that is in
some ways similar to the well-known k-means algo-
rithm. Once the preclusters are defined, a hierarchi-
cal agglomerative (bottom-up) clustering method
consecutively joins the preclusters into a smaller
number of clusters based on their distance in feature
space (Mooi and Sarstedt 2011). All five years of
the fPAR measures were incorporated into one data
frame, standardized to g scores, and then clustered
with the two-step algorithm and applying a log-like-
lihood distance measure. Clustering data from all
years together, rather than each year separately,
reduces the chance of detecting spurious change
that might result from the clustering procedure itself
(e.g., due to randomness associated with cluster ini-
tiation; Rinsurongkawong and Eick 2010; Mills
et al. 2013).

In partitional clustering methods such as k-means,
the analyst must select the number of clusters prior to
clustering. In hierarchical clustering, the analyst
selects the number of clusters after the fact based on
the resultant level of (dis)similarity among clusters at
each successive stage of the hierarchy (Jain, Murty,
and Flynn 1999; Jain 2010). In SPSS’s two-step algo-
rithm, either option can be used. Previous studies have
mapped ten to fifteen global ecosystem functional

types (Bonan et al. 2002; Friedl et al. 2010; Poulter
et al. 2011; Ivits et al. 2013). To maximize thematic
resolution yet enable general comparisons with these
and other global mapping products (e.g., Olson et al.
2001), we specified that fourteen clusters should be
delineated. Nonvegetated pixels (fPAR = 0) were
excluded from the classification.

The output data frame contained cluster member-
ship values for each pixel, corresponding to each year.
This data frame was then imported into ArcGIS (Ver-
sion 10.3, Esri, Redlands, CA, USA). Cluster member-
ship values for each of the five years were displayed
one by one, producing five separate maps. An overall
map representing all years was also produced by calcu-
lating the majority (modal) cluster value of each pixel
using the Cell Statistics tool in ArcGIS. The maps
were smoothed using a 3 x 3 majority filter.

Clusters were interpreted by assessing the statistical
distribution (e.g., mean, median, range) of each cluster
with respect to fPAR,,, and fPAR., (i.e., the input
variables). To provide additional context to the clus-
ters, we then determined the dominant (International
Geosphere-Biosphere Programme) land cover type
(Friedl et al. 2010) and biome type (Olson et al.
2001) within each of the resultant clusters.

Spatial-Temporal Variability and Change

We assessed the direction and magnitude of change,
as well as the frequency of change in ecosystem func-
tional types over time. We also assessed the change in
spatial pattern (composition and configuration) of eco-
system functional types.

Direction, Magnitude, and Frequency of Change over
Time

For each of the five years of data, mean annual
greenness (fPARg,,) and mean annual seasonality
(fPAR.,) were calculated for each cluster. Each
cluster was then described in terms of its long-term
variability (coefficient of variation and standard
deviation, respectively) in each of these two met-
rics. To further characterize temporal variation in
the clustering, change matrices were built for each
of four change periods: 2000 to 2003, 2003 to
2006, 2006 to 2009, and 2009 to 2012. Each matrix
contained the number of pixels classified as each
cluster type for each date, thus providing informa-
tion on the type and magnitude of change. We
mapped the results for each of the four change
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periods and summed the results of the four individ-
ual matrices to generate one table representing total
change over all years. To determine whether
changes were sustained and directional or short-
term and variable, we also assessed the frequency of
change for each individual pixel (zero to four
times). For those pixels that changed more than
two times, we then assessed the number of unique
values. Pixels with four unique cluster classifications
represent a very different type of change than pixels
that changed four times but had only two unique
values during that time.

Spatial Pattern Changes in Ecosystem Functional Types

The novelty of our approach is a dynamic
regionalization based on global fPAR measures and
an assessment of changes in spatial pattern over
time. Two components of spatial pattern in the
clusters were assessed: composition and configura-
tion. Composition refers to the area of a cluster,
indicating what and how much is present (Gustaf-
son 1998; Fahrig 2005). We calculated the area of
each cluster at each time step by summing the total
number of pixels in each. Note that the sum of pix-
els in each cluster is also contained in the change
matrices previously described; the key difference is
that to measure wvariability in spatial pattern, we
then also computed the coefficient of variation of
cluster area over time.

Configuration refers to explicit spatial arrange-
ments such as aggregation, fragmentation, and adja-
cency (Gustafson 1998; Fahrig 2005). To assess
spatial configuration, we calculated a measure of
aggregation using FRAGSTATS (McGarigal and
Ene 2013), a tool designed to calculate landscape
metrics from categorical maps. We chose a single
measure of spatial configuration, clumpiness, because
it is bounded (ranges from —1 to +1), thus facili-
tating interpretability (Crews-Meyer 2004), and
responds linearly to changes in aggregation regard-
less of class area (Neel, McGarigal, and Cushman
2004). Values of clumpiness approaching —1 occur
in maximally disaggregated situations, whereas val-
ues approaching +1 occur in maximally clumped
situations. We emphasize that the spatial resolution
and total landscape extent remained constant at
each time step, thus avoiding challenges with met-
ric comparison (e.g., Wu et al. 2002; Wu 2004).

Clumpiness was calculated for each cluster for each

of the five years (2000, 2003, 2006, 2009, 2012)

and the coefficient of variation was computed.

Results
Classification and Mapping of Functional Types

The fourteen derived clusters (functional types)
corresponded reasonably well to existing global
biome and land cover classifications (Table 1), and
each functional type had a unique distribution with
regard to cumulative annual greenness and annual
seasonality of greenness. Clusters 1 through 4 were
generally found at high elevations, high latitudes, or
both, with relatively low annual greenness and rela-
tively high seasonality (Figures 1 and 2). Clusters 1
and 2 were labeled as tundra functional types and
were the least green (mean fPAR,, values of 6.3
and 7.9, respectively) and most seasonal (mean
fPAR., values of 1.4 and 1.2, respectively) of all
clusters (Figure 1, Table 1). Cluster 3 was similar to
Clusters 1 and 2 in terms of annual greenness (mean
fPAR,,, = 7.8) but was less seasonal (mean fPAR_,
= 0.75). Cluster 3 was grass-dominated and lay pri-
marily within the Eurasian steppe and the Great
Plains region of North America. Cluster 4 was an
open, shrubby functional type with a slightly higher
annual greenness than the first three (mean fPAR,
= 11.4) and its degree of seasonality was intermedi-
ate between Clusters 2 and 3 (mean fPAR., =
0.98). It was found in Scandinavia, Siberia, Alaska,
and northern Canada, as well as the Aspen Parkland
region in central Canada.

Cluster 5 was grass or shrub dominated and had
low annual greenness (mean fPAR,,, = 6.2) similar
to Clusters 1 through 3 but was much less seasonal
than those clusters (mean fPAR., = 0.45). It
occurred at lower latitudes, primarily in arid regions
of Eurasia, central Australia, northern Africa, the
southwestern United States, and southern Chile.
Clusters 6 and 7 were also grass and shrub domi-
nated but with a slightly higher annual greenness
than Cluster 5 (mean fPAR,,, = 9.4 and 12.1,
respectively). They occurred in semiarid regions
such as southern Africa, Australia, India, and the
western United States. Clusters 8 and 9 were domi-
nated by forests, with moderately high annual
greenness (mean fPAR,,, = 18.5 and 15.1, respec-
tively) and moderately high annual seasonality

(mean fPAR., = 0.58 and 0.80, respectively). They
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Figure 1. Distribution of total annual productivity (fPARg,y,) and seasonality in productivity (fPAR,) for the fourteen clusters, with mean
values labeled. Boxplots were produced with values for all years combined.
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occurred primarily at moderately high latitudes
across large areas of Europe, Eurasia, and North
America within the boreal forests and taiga biome.

Clusters 10 through 14 were characterized by
high annual greenness and low seasonality. Cluster
10 was dominated by savannas and scattered across
temperate, subtropical, and especially tropical
regions of the globe (Table 1, Figure 2). It had a
mean annual greenness of 25.7 and a mean annual
seasonality of 0.22. Cluster 11 was slightly less pro-
ductive (mean fPAR,,, = 22.6) and slightly more
seasonal than Cluster 10 (mean fPAR., = 0.42). It
occurred primarily within temperate broadleaf and
mixed forests in central Europe and North America.
Cluster 12 was dominated by savannas with a mean
annual greenness value of 18.8 and a mean fPAR.,
of 0.24. It occurred in regions such as northeastern
Australia, parts of southern and central Africa, and
the Indian subcontinent. Clusters 13 and 14
occurred in the tropical Amazon and Congo River
basins and had very low seasonality (mean fPAR,,
= 0.05 and 0.12, respectively) and very high
annual greenness (mean fPAR,,, = 38.0 and 31.1,
respectively). Cluster 13 was predominately tropical
forest, and Cluster 14 (substantiated by a visual
assessment of higher spatial resolution satellite
imagery on GoogleEarth) was more open, represent-
ing pastures, croplands, or regenerating forests.

Spatial-Temporal Variability and Change

Direction, Magnitude, and Frequency of Change over
Time

The mean values of fPAR,,,, and fPAR., for each
cluster were somewhat variable over time (Figure 3).
Annual greenness (fPARy,n) was highly variable in
Cluster 1 (CV = 0.043), moderately high in Cluster 5
(grasslands; CV = 0.018), and less variable in the
other clusters (CV < 0.010). Annual seasonality
(fPAR.,) was most variable in Cluster 1 (tundra) but
was quite stable in all other clusters.

An assessment of change frequency and uniqueness
indicated that the majority (50 percent) of pixels with
a high frequency of change had only two unique values
through time, and 44 percent had three unique values
over time. The cumulative change matrix (Table 2)
indicates that most changes represented pixels chang-
ing from one functional type to another functional
type that was relatively similar (e.g., Figure 1). For
instance, pixels that changed from Cluster 1 (low

productivity tundra) were primarily reclassified as
Cluster 2 (also tundra but with slightly higher annual
greenness and slightly lower seasonality), whereas
change in Cluster 2 was primarily toward Cluster 1
(Table 2). As another example, pixels that changed in
Cluster 8 (moderately productive forests) were mostly
reclassified as Cluster 11 (highly productive forests),
and the dominant change for pixels in Cluster 9 (mod-
erately productive forests) was to Cluster 8 (also mod-
erately productive forests).

Spatial Pattern Changes in Ecosystem Functional Types

Change matrices were generated for each of the four
change periods and used to calculate the net difference
in cluster extent (i.e., total magnitude of change) for
each cluster at each time step. From 2000 to 2003,
Cluster 1 (tundra) changed the most of all clusters,
decreasing ~19 percent in area (Figures 4 and 5,
Table 3). Cluster 4 (forests, shrublands, and grasslands
with low to moderate productivity), Cluster 7 (grass-
lands and scrublands with moderate productivity),
Cluster 8 (moderately productive forests), and Cluster
12 (grasslands and savannas) also changed by at least
+10 percent. Conversely, the change in area from
2000 to 2003 in Cluster 10 (highly productive forest
and savanna) and Cluster 13 represented less than 1
percent of their area in 2000. In the next time step
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Figure 3. Spatial-temporal variability in global ecosystem func-
tional types.
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Table 2. Change in cluster area over time, calculated from
change matrices (e.g., Table 3) for each year (not shown)
by differencing row sums and column sums for each cluster

Percentage change

Cluster  2000-2003*  2003-2006"  2006-2009°  2009-2012¢

1 —18.76 23.12 —11.38 0.76
2 —5.78 2.24 13.95 —10.77
3 1.52 1.85 —3.45 15.84
4 12.05 —12.56 4.53 —17.67
5 5.59 —11.95 20.70 —13.85
6 1.18 12.81 —6.81 —6.31
7 —14.97 8.34 —14.36 20.86
8 10.92 —6.97 2.52 1.42
9 5.47 —4.42 1.74 5.04
10 0.50 2.09 —5.09 —0.84
11 5.99 —6.25 2.88 —2.48
12 —13.31 12.40 —4.85 12.86
13 0.98 -1.23 —0.34 —1.47
14 1.80 0.06 —5.71 2.96

Note: Change greater than |10%)] is shown in bold.
“Relative to cluster area in year 2000.
PRelative to cluster area in year 2003.
“Relative to cluster area in year 2006.
dRelative to cluster area in year 2009.

(from 2003 to 2006), Cluster 1 again changed the most,
this time gaining area equivalent to ~23 percent of its
area in 2003. Clusters 4, 5, and 6 (all low to moderately
productive forests, grasslands, or shrublands) and Clus-
ter 12 changed by ~12 to 13 percent. Cluster 14
(highly productive forests and shrublands) changed the
least, increasing in area by only 0.06 percent. From
2006 to 2009, Cluster 5 (grasslands) changed the most,
increasing in area by ~21 percent; Cluster 13 (high
productivity forests) changed the least, losing approxi-
mately 0.3 percent of its area. Finally, in the last time
step (from 2009 to 2012), Cluster 7 changed the most,
increasing in area by ~21 percent, whereas the area of
Cluster 1 (tundra) changed by only ~0.8 percent.

The spatial pattern and, in particular, composition
(area) of the fourteen clusters was more varible through
time than was the change in magnitude of the fPAR val-
ues (Figure 5). For all clusters, variation in composition
(area) was greater than variation in configuration
(clumpiness). Variability in area was particularly high in
Cluster 1 (tundra), Cluster 5 (low productivity grass-
lands), Cluster 7 (moderate productivity grasslands and
shrublands), and Cluster 12 (highly productive grass-
lands, savannas, and shrublands; CV > 0.06). Variability
in cluster area was much lower in the highly productive

forests represented by Cluster 13 (CV = 0.01). The

most variable (CV > 0.014) clusters in terms of spatial
configuration (clumpiness) were Clusters 1 and 2 (tun-
dra), Cluster 3 (low productivity grasslands), and Cluster
7, whereas Cluster 13 (highly productive forests) had
the lowest variation in this indicator (CV = 0.001).

Discussion
Classification and Mapping of Functional Types

Our functional type classification captures an infor-
mative proportion of existing global biome and land
cover maps but conveys specific information regarding
functional variability that is unique and complemen-
tary to biome and land use mapping. Regionalizations
aggregate information and allow for environmental
assessment, management, and planning (Loveland and
Merchant 2004). Depending on scale, perceived
importance, and objectives, regions can be constructed
using any number or type of environmental variables,
including productivity, land cover, topography, geol-
ogy, climate, and phytogeographic and zoogeographic
information. Functional types represent collections of
species that respond to or affect one or more ecosystem
processes or conditions in a similar manner (Hooper
et al. 2005), and regionalizations representing func-
tional types could also be used to assess, monitor, man-
age, and predict changes to ecosystems. Remote
sensing can capture many functional properties of veg-
etation, including structure and productivity (Ustin
and Gamon 2010). Yet, in the global change litera-
ture, regions used to summarize temporal variability in
remotely sensed proxies of functions like primary pro-
ductivity (e.g., fPAR, NDVI) are normally defined by
other data sets such as land cover (e.g., De Jong et al.
2012; Eastman et al. 2013). As boundaries of land
cover classes do not necessarily translate to boundaries
of function types, spatial heterogeneity in functional
attributes is generalized when using land cover bound-
aries for assessment. We used two remotely sensed
indicators of primary productivity and phenology in a
data-driven methodology to classify and map ecosys-
tem functional types (Figure 2). Primary productivity
can vary independent of changes in land cover or veg-
etation structure because the latter changes more
slowly in response to climatic or anthropogenic pertur-
bations (Paruelo, Jobbdgy, and Sala 2001) and does
not capture seasonal variability. Our clusters capture a
combined measure representative of annual greenness
and seasonality and we note that the two measures
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Figure 4. Change per ecosystem functional type (cluster) at each step in time, corresponding to Table 2. (Color figure available online.)
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Figure 5. Changes occurring in particularly dynamic clusters and regions from 2000 to 2012. The left panel shows the back-and-forth nature
of Clusters 5 and 7 in Australia, whereas the right panel shows similar dynamics between Clusters 1 and 2 in Arctic Canada. (Color figure

available online.)

(fPAR,m and fPAR.,) are inversely related. Pixels
that shift from one cluster to the next could be inter-
preted as areas where climatic change or disturbance,
over the time period assessed, led to changes in the
cumulative sum and intra-annual variability of fPAR.
Such a transition represents a change in ecosystem
function, and not necessarily a structural change. We
note that this indirect or nonperfect relationship
between fPAR and land cover also makes it difficult to
verify the changes we have identified.

Spatial-Temporal Variability and Change

Many of the changes observed at one time step in
this study were not sustained through time, suggest-
ing that our analysis is largely capturing short-term
vegetation responses to climatic variability or land
use and disturbance dynamics. Pixels generally
changed from one cluster to another with relatively
similar distributions of fPAR,, and fPAR., values
and then back again at a later date (Figure 4,
Tables 2 and 3). For instance, in Australia in the
year 2000, Cluster 7 (moderately productive

grasslands and shrublands) was more abundant than
Cluster 5 (low productive grasslands; Figure 4).
Three years later, the opposite was true. In 2006,
the amount of Cluster 7 increased again, correspond-
ing to a decrease in the area of Cluster 5. This back-
and-forth nature continued through 2009 and 2012.
In Arctic Canada, Clusters 1 and 2 (both tundra
functional types) had a similar dynamic over time
(Figure 4). Changes in primary productivity might
follow long-term global climate change (Boisvenue
and Running 2006; Xu et al. 2013; Keenan et al.
2014; Buitenwerf, Rose, and Higgins 2015; Sitch
et al. 2015). Primary productivity can also vary as a
result of climatic patterns and anomalies such as the
El Nino Southern Oscillation (ENSO; Nemani et al.
2003; Peng et al. 2012) and droughts (Zhao and
Running 2010), as well as natural disturbances such
as volcanic eruptions (Lucht et al. 2002), fire (Hicke
et al. 2003; Goetz, Fiske, and Bunn 2006), and land
use/land cover change (Mao et al. 2013). A stable
regionalization where boundaries remained fixed
over time would not capture this spatial variability
in ecosystem function.
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Because the boundaries between our regions varied
through time, processes leading to variability in annual
greenness or annual seasonality were overwhelmingly
manifested as changes in spatial composition (area) of
the functional types (Figures 4 and 5). Clusters exhib-
ited variability over time with respect to area
(Figure 4), often increasing in area at one time step
and decreasing at the next (Table 3). Clusters at high
latitudes representing tundra and taiga ecosystems
(e.g., Clusters 1, 2, 4) and those in temperate or sub-
tropical regions representing arid or semiarid ecosys-
tems (e.g., Clusters 5, 7, 12) had the highest
magnitude of change in spatial area, whereas tropical
forests (Clusters 13 and 14) changed the least.

High spatial-temporal variability in the area of arid
and semiarid areas is most likely due to the effect of
climatic variability on primary productivity. Other pro-
cesses such as shrub encroachment and agriculture
interact with climate to influence vegetation dynamics
and spatial configuration in arid and semiarid ecosys-
tems (Asner et al. 2004; Knauer et al. 2014) but, at
the spatial extent and resolution of this analysis (5-km
pixels, global extent), are likely less obvious than
broader climatic processes. In arid and semiarid
regions, water is the dominant limiting factor to vege-
tation productivity, although temperature and solar
radiation also interact with water availability to impose
constraints on growth (Nemani et al. 2003; Fensholt
et al. 2012). Vegetation productivity and phenology in
these ecosystems can be particularly sensitive to vari-
ability in rainfall; a rain event can produce a sudden
flush, or pulse, of growth in vegetation (Noy-Meir
1973). In a study in west-central North America,
annual grasses such as cheatgrass (Bromus tectorum)
were found to be exceptionally reactive to variation in
rainfall, and extensive areas of these green areas were
easily detectable from space (Bradley and Mustard
2005). Across multiple biomes in North America,
Knapp and Smith (2001) found interannual variability
in above-ground NPP to be considerably greater in
grasslands than in forests in North America and
highlighted that the magnitude of production pulses
following precipitation pulses was likewise much
greater for grasslands. Globally, De Jong et al.’s (2012)
study identified sequential periods of abrupt greening
followed by gradual browning for semiarid ecosystems
such as shrublands and grasslands. Savannas, which
consist of both woody and herbaceous vegetation and
are found in tropical and subtropical regions, are also
known to be a very highly dynamic ecosystem strongly

limited by rainfall (Sankaran et al. 2005). Variability

is especially high at the drier end of the savanna spec-
trum, where Ma et al. (2013) found savannas domi-
nated by annual grasses in northern Australia to be the
most responsive to variation in precipitation. Woody
species and, to a lesser extent, perennial grasses, with
their deeper roots that can access water stored below
ground, are slower to grow and show less variable
responses to precipitation patterns (Bradley and Mus-
tard 2005; Rich, Breshears, and White 2008; Ma et al.
2013). Our results demonstrate that on a global scale,
vegetation greenness in tropical forests is stable
throughout the year here relative to drier, nonforested
ecosystems and corroborate the greater variability of
tropical pastures (e.g., Cluster 14) compared to tropical
forests (e.g., Cluster 13; Huete et al. 2006). Some trop-
ical forests exhibit high variability in leaf area and
photosynthesis due to seasonality of rainfall and cloud
cover (Huete et al. 2006; Myneni et al. 2007; Bi et al.
2015; Xu et al. 2015). In other tropical systems, the
ability of trees’ roots to access and redistribute soil
water helps buffer these systems against seasonal
droughts, and trees can remain green and actively pho-
tosynthesize for most of the year (Davidson et al. 2012;
Ma et al. 2013). Variability in productivity in the
Amazon could also be due to large-scale forest clear-
cutting, grazing, and subsequent agricultural abandon-
ment (Vieira et al. 2003; Foley et al. 2007). The
results of our research regarding the high degree of var-
iability in Arctic tundra align with studies that have
identified increasing trends in remotely sensed indexes
of productivity in these regions (e.g., Beck and Goetz
2012; Mao et al. 2013; Buitenwerf, Rose, and Higgins
2015). At high latitudes and high elevations, primary
productivity is strongly limited by temperature,
although moisture and solar radiation are also limiting
(Bliss and Matveyeva 1992; Nemani et al. 2003).
Warmer temperatures in Arctic and alpine regions can
lead to earlier flowering and greening and a longer
growing season (Oberbauer et al. 2013), and there is
substantial evidence of shrub proliferation and
increased above-ground biomass (e.g., Hill and Henry
2011; Myers-Smith et al. 2011; Elmendorf et al. 2012;
Lantz, Marsh, and Kokelj 2012; Fraser et al. 2014). Pri-
mary productivity is also variable over space and time
due to variations in snow and ice cover and melt
(Stow et al. 2004; Grippa et al. 2005; Choler 2015),
which in turn are affected by temperature variability
(Rumpf et al. 2014). Thus, cumulative annual green-
ness and variability of greenness will vary considerably
if snow cover lasts a month longer or a month less
from one year to the next. We also note that remotely
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sensed estimates of primary productivity in snow-cov-
ered areas will increase following snowmelt even if
unrelated to increased vegetation growth (Beck et al.
2006). In the subarctic and northern Boreal regions
(e.g., as represented by portions of Cluster 4), both in
situ and remote-sensing studies have found periods of
greening and browning, the latter of which has been
attributed to drought and temperature stress (Lloyd
and Bunn 2007; Goetz et al. 2011; De Jong et al.
2012). Large forest fires are also a natural disturbance
that can occur over very large, contiguous areas, with
millions of hectares typically burning annually in the
northern Boreal (Stocks et al. 2002; Kasischke and
Turetsky 2006), and might explain some of the vari-
ability in Cluster 4 (as well as Clusters 8 and 9).
Clusters with high temporal variability in spatial
pattern also tend to be spatially heterogeneous on the
landscape (i.e., occurring within a mosaic of multiple
classes for any given time period). For instance, Clus-
ters 1 and 2 occur in Arctic regions where the extreme
environment can lead to landscapes with highly
patchy (i.e., spatially discontinuous) vegetation (Bill-
ings and Mooney 1968; Bliss and Matveyeva 1992)
and the spatial configuration of trees at their northern
limit is highly variable and dynamic (Harper et al.
2011). Clusters 3, 5, 6, 7, 10, and 12, which represent
grasslands, savannas, and shrublands, are often hetero-
geneous in that woody vegetation is interspersed in
various degrees with herbaceous vegetation, or patches
of bare ground might be present. Cluster 7, for exam-
ple, includes linear swaths of green vegetation within
the valleys of arid canyon lands of the western United
States (e.g., Nevada and Utah). We expect greenness
within some of these ecosystems to be more spatially
expansive during the wet season, whereas greater spa-
tial heterogeneity in greenness would arise in dry peri-
ods because of the aforementioned differences in the
response of woody and herbaceous species to drought.
Scientists have called for research to address vari-
ability in ecosystem functional types caused by cli-
matic and anthropogenic impacts (Ivits et al. 2013),
and spatial information has been suggested as a useful
addition to a time-based collection of ecosystem
change indicators (Kéfi et al. 2014). At local and
regional scales, studies have shown that the spatial
configuration of productivity and phenological
responses affects and is affected by other ecological
processes such as seed dispersal, hydrology, pollination,
and carbon storage (e.g., Asner et al. 2004). In this
study, we have demonstrated that a dynamic regionali-
zation approach is an effective framework to capture

temporal variability in the spatial heterogeneity of
ecosystem function at global scales.

Conclusion

We used remotely sensed fPAR data to delineate
fourteen global ecosystem functional types, each repre-
senting a unique productivity and phenology regime.
Such classifications, or regionalizations, can be a vital
component of global biodiversity and ecosystem service
assessment and conservation efforts, as demonstrated
by the popularity and widespread use of the World
Wildlife Fund’s global ecoregion map (Olson et al.
2001). As well, a discrete functional type classification
is complementary to monitoring continuous, pixel-
based values of productivity or phenology because the
classification captures and presents a simplified repre-
sentation of spatial heterogeneity in ecosystem func-
tion. Specifically, a regionalization provides context to
changing fPAR values by providing a multivariate or
joint-measure assessment of changes in ecosystem func-
tion. Our dynamic framework is novel in that it allows
an assessment of spatial-temporal variability in ecosys-
tem functional units that would not be possible using a
static regionalization.

We have demonstrated that the spatial patterns of
primarily productivity in arid and semiarid ecosys-
tems, including polar regions, are considerably more
variable than in tropical forests. Climatic change and
land use are major pressures in these ecosystems.
Future work should examine the explicit relationship
between the spatial pattern of global ecosystem func-
tions and hypothesized drivers of such change, such
as climatic variability and anthropogenic distur-
bance. Understanding these linkages will facilitate
management and projections of future change. As
more data become available and computational
power increases, our methodology could be repeated
using longer temporal sequences at a higher temporal
resolution, enabling the creation of a long-term base-
line. Deviations from this baseline spatial-temporal
variability can then be detected, signaling areas
where more fine-scale monitoring and management
efforts might need to be prioritized. Earth observation
data are systematic, repeatable, and globally compre-
hensive data at a variety of spatial and temporal
resolutions that can be used in a quantitative, data-
driven, and dynamic framework for monitoring
changes to essential ecosystem processes in these and
other ecosystems.
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