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ABSTRACT

Temperature increases across the circumpolar

north have driven rapid increases in vegetation

productivity, often described as ‘greening’. These

changes have been widespread, but spatial varia-

tion in their pattern and magnitude suggests that

biophysical factors also influence the response of

tundra vegetation to climate warming. In this

study, we used field sampling of soils and vegeta-

tion and random forests modeling to identify the

determinants of trends in Landsat-derived En-

hanced Vegetation Index, a surrogate for produc-

tivity, in the Beaufort Delta region of Canada

between 1984 and 2016. This region has experi-

enced notable change, with over 71% of the Tuk-

toyaktuk Coastlands and over 66% of the Yukon

North Slope exhibiting statistically significant

greening. Using both classification and regression

random forests analyses, we show that increases in

productivity have been more widespread and rapid

at low-to-moderate elevations and in areas domi-

nated by till blanket and glaciofluvial deposits,

suggesting that nutrient and moisture availability

mediate the impact of climate warming on tundra

vegetation. Rapid greening in shrub-dominated

vegetation types and observed increases in the

cover of low and tall shrub cover (4.8% and 6.0%)

also indicate that regional changes have been dri-

ven by shifts in the abundance of these functional

groups. Our findings demonstrate the utility of

random forests models for identifying regional

drivers of tundra vegetation change. To obtain

additional fine-grained insights on drivers of in-

creased tundra productivity, we recommend future

research combine spatially comprehensive time

series satellite data (as used herein) with samples of

high spatial resolution imagery and integrated field

investigations.
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MANUSCRIPT HIGHLIGHTS

� Over 70% of the Beaufort Delta region has

exhibited significant greening

� Geology, topography, and land cover mediate the

response of tundra vegetation to warming

� Shifts in productivity are associated with shifts in

the cover of shrub-dominated terrain

INTRODUCTION

Increasing temperatures in the Arctic (Arctic

Monitoring and Assessment Programme [AMAP]

2004; Serreze and others 2009; Johannessen and

others 2016; Davy and others 2018), while

regionally variable in magnitude, are driving rapid

changes to the structure and composition of tundra

vegetation. Plot-based and fine-scale remote sens-

ing studies have documented shifts in the domi-

nant vegetation, with deciduous shrubs now

proliferating in what was once lichen- and grami-

noid-dominated tundra (Elmendorf and others

2012; Ropars and Boudreau 2012; Lantz and others

2013; Moffat and others 2016; Travers-Smith and

Lantz 2020). Vegetation productivity can also be

measured at broad scales using multispectral satel-

lite vegetation indices (Gao and others 2000) such

as the Enhanced Vegetation Index (EVI) and the

Normalized Difference Vegetation Index (NDVI).

Changes in these indices have been observed across

the Arctic with increasing productivity referred to

as ‘tundra greening’ (Jia and others 2003; Bhatt

and others 2010; Epstein and others 2012). Conti-

nental and pan-Arctic scale changes in vegetation

productivity have generally been attributed to ra-

pid temperature increases at high latitudes (Jia and

others 2003; Bhatt and others 2010; Miller and

Smith 2012; Fraser and others 2014a; Berner and

others 2020). Plot-scale warming experiments and

repeated observation also provide evidence that

vegetation change has been caused by increasing

temperature (Chapin and others 1995; Walker and

others 2006; Hudson and Henry 2009; Elmendorf

and others 2012).

Although widespread, observed increases in

Arctic vegetation productivity have not been uni-

form, with some regions exhibiting stable or

decreasing productivity (Jia and others 2006; Bhatt

and others 2010; Epstein and others 2012; Ju and

Masek 2016). Recent evidence suggests that varia-

tion in the response of tundra vegetation is related

to both broad-scale (Wang and Friedl 2019; Berner

and others 2020; Campbell and others 2021; Chen

and others 2021) and fine-scale (Moffat and others

2016; Myers-Smith and others 2019; Bjorkman and

others 2020) variation in biophysical factors, but

few studies have explored linkages between these

scales. In their conceptual model, Pearson and

Dawson (2003) suggest that climate variables

(long-term temperature and precipitation trends)

have greater influence at a global and continental

scales, whereas biophysical variables (such as soil

moisture, surface topography and soil conditions,

land cover, and land use) are likely to influence

processes at landscape or local scales.

At the landscape-scale, research suggests that

variability in soil moisture, land cover type, and

landscape position are responsible for the hetero-

geneous response of Arctic vegetation productivity

(Ropars and Boudreau 2012; Tape and others 2012;

Martin and others 2017; Bonney and others 2018;

Campbell and others 2021). In this study, we ex-

plore the environmental factors driving hetero-

geneity in vegetation productivity trends across the

Beaufort Delta region by combining plot-based

fieldwork with an analysis of the Landsat satellite

archive (Wulder and others 2019). We use a ran-

dom forests (RF) ensemble decision tree algorithm

to determine the environmental factors influencing

spatial heterogeneity in tundra productivity trends

in the Beaufort Delta region. Ultimately, we seek to

understand how variation in environmental con-

ditions influences the spatial patterns of vegetation

productivity at a landscape-scale. An improved

understanding of factors mediating tundra vegeta-

tion change will contribute to local and regional

planning and inform earth system models that in-

clude feedbacks between vegetation growth and

ecological processes such as permafrost dynamics,

albedo, and evapotranspiration (Verseghy 1991;

Verseghy and others 1993; Verseghy 2000; Bonan

and others 2003; Quillet and others 2010).

STUDY AREA

This study focuses on the tundra ecosystems across

the Yukon North Slope (0.54 MHa) and Tuktoy-

aktuk Coastlands (2.92 MHa). These Low Arctic

ecosystems are located in the Beaufort Delta region

of the western Canadian Arctic (Figure 1a). This

coastal region borders the Beaufort Sea to the north

and is bounded by the northern edge of the sub-

arctic forest to the south (Timoney and others

1992). Both regions are located within the Inu-

vialuit Settlement Region and are significant to the

communities of Tuktoyaktuk (population of 900),

Inuvik (population of 3200), and Aklavik (popu-

lation of 600), who use these lands for hunting,
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fishing, trapping, traditional harvesting of plants,

and other cultural practices (Alunik and Morrison

2003; Murray and others 2005; Tyson and others

2016).

The Yukon North Slope extends from the foot-

hills of the Richardson Mountains to the coast of

the Beaufort Sea. Areas at high elevation drain to

the Beaufort via the deeply incised canyons of the

Babbage, Blow, and Big Fish Rivers among others

(Rampton 1982; Yukon Ecoregions Working Group

[YEWG] 2004). Rolling hills and hummocky ter-

rain dominate the eastern portion of the Yukon

North Slope that ends in a steep escarpment at the

Mackenzie Delta (Rampton 1982). Average annual

temperature between 1984 and 2016 at Shingle

Point was -9.2 �C with an average summer tem-

perature (June through August) of 9.0 �C (Envi-

ronment and Climate Change Canada [ECCC]

2018b). On average, Shingle Point received

254 mm of precipitation annually (ECCC 2018b),

about half of which fell as rain (Burn and Zhang

2009). The Tuktoyaktuk Coastlands extend from

the eastern limit of the Mackenzie Delta to Cape

Bathurst to the east. This gently rolling landscape is

Figure 1. a Study area and site locations from the 2019 field season with inset showing the extent the map in the context

of northwestern Canada and Alaska, USA. b Surficial geology classes comprising greater than 1% of the study area (Fulton

1989) and c elevation in metres (Porter and others 2018) used in random forests analyses across the study area.
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scattered with lakes and ponds and is characterized

by hummocky terrain in upland areas and polyg-

onal terrain and wetlands at lower elevations

(Rampton 1988; Ecosystem Classification Group

[ECG] 2012). The climate at Tuktoyaktuk is similar

to Shingle Point, with average annual and summer

temperatures between 1984 and 2016 of -9.4 �C
and 8.9 �C, respectively (ECCC 2018a). Average

total precipitation during this period was 146 mm,

about 40% of which fell as rain (ECCC 2018a). The

Yukon North Slope and Tuktoyaktuk Coastlands

are separated by the low-lying alluvial terrain in

the Mackenzie Delta ecoregion. This dynamic

ecosystem was excluded from our study area be-

cause much of it is forested and the tundra com-

munities present are strongly influenced by

hydrological dynamics (Gill 1972, 1973; Pearce

1986; Burn and Kokelj 2009).

The Yukon North Slope hosts a diversity of ter-

rain types including coastal beaches and estuaries,

low-lying wetlands, upland tussock tundra, and

shrub tundra (YEWG 2004; Wang and others

2019). The upland tundra in the foothills of the

Richardson Mountains occurs on well-drained soils

that support characteristic communities of tall and

dwarf shrubs, lichens, graminoids and forbs (YEWG

2004). The Tuktoyaktuk Coastlands are largely

covered by shrub and tussock tundra with wetter

areas dominated by sedge and moss tundra (ECG

2012; Moffat and others 2016). In the southern

portion of this region, scattered spruce woodlands

are located along sheltered creeks and other low-

lying areas (Lantz and others 2019).

Both the Yukon North Slope and Tuktoyaktuk

Coastlands are underlain by continuous permafrost

and are characterized by thermokarst features

including polygonal terrain, earth hummocks, thaw

slumps and pingos (Rampton 1982, 1988; YEWG

2004; ECG 2012). The Laurentide Ice Sheet covered

most of this region during the Wisconsinan glaciation

with the exception of land south and west of the

Richardson Mountains in northern Yukon and the

northern tip of the Tuktoyaktuk Peninsula and Cape

Bathurst (Jessop 1971; Hughes and others 1981; Duk-

Rodkin and Hughes 1995; YEWG 2004; ECG 2012).

METHODS

To investigate the drivers of vegetation change in

the Beaufort Delta region, we combined RF mod-

elling of regional EVI trends with multivariate

analyses of plot-scale field data. We classified pixel-

based trends in EVI (1984–2016) as: (1) exhibiting

significant increases in EVI or (2) un-trended. We

used these binary classes (increasing EVI/un-tren-

ded EVI) as response variables in a classification RF

model to determine the factors facilitating and

constraining increased productivity. To identify the

factors influencing the magnitude of greening, we

also performed a regression RF model that pre-

dicted the slope of significant positive EVI trends.

To facilitate site selection for field sampling and

multivariate analyses, pixels exhibiting significant

increases in EVI were further classified as moderate

or high magnitude greening.

EVI Trend Analysis

To document changes in the productivity of tundra

vegetation across the study area, we tracked

changes in EVI using the Landsat satellite archive

(1984 – 2016). EVI is a modified form of NDVI in

which the blue band of the visible spectrum and

satellite-specific correction terms (C1, C2, and L)

account for soil (L) and atmospheric/aerosol (C1

and C2) influences (Gao and others 2000).

EVI ¼ 2:5 � NIR� RED

NIRþ C1 � REDð Þ � ðC2 � BLUEÞ þ L

ð1Þ

We used EVI in this analysis because it is sensi-

tive to differences in vascular plant phytomass and

vascular plant net primary productivity (Kushida

and others 2015) and it performs well across a

range of soil moisture conditions (Raynolds and

Walker 2016). We obtained the EVI trend surface

from Chen and others (2021) who generated the

trend surface using annual composite Landsat

images from 1984 to 2016. These images were ob-

tained using the Composite2Change method for

selecting best-available-pixels from the Landsat

archive to produce a gap-free surface reflectance

raster for each year (Hermosilla and others 2016).

The imagery used to produce best-available-pixel

composites was cross-calibrated among Landsat

sensors (see: Markham and Helder 2012; Her-

mosilla and others 2016). Composite imagery was

used to calculate EVI on a pixel basis (30-m spatial

resolution) for each year and a pixel-based, non-

parametric Theil-Sen regression was performed on

the resulting time series (Theil 1950; Sen 1968)

using the EcoGenetics package (Roser and others

2017) in R (R Core Team 2019). The significance of

pixel-based slopes was assessed using a Mann–

Kendall test for monotonic trends (Mann 1945;

Kendall 1948) performed using the Kendall package

in R (McLeod 2011). In our analysis, we used the

resulting p-values to determine whether significant

change (p < 0.05) had occurred in each pixel from

1984 to 2016.
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We also used the raster surface derived from

Theil-Sen regression of EVI trends to classify the

study area into site types exhibiting: (1) high

greening, (2) moderate greening, (3) no significant

change (stable sites), and (4) browning (see his-

togram: Supplementary Fig. 1) for the purpose of

our field investigation. Areas showing non-signifi-

cant EVI trends (p > 0.05) were classified as stable.

Pixels with significant increases in EVI were further

classified based on the slope of the EVI trend. Pixels

with slopes that were within one standard devia-

tion (SD; 1.45 9 10–3 per year) of the mean EVI

trend (< 2.24 9 10–3 + SD per year) were classi-

fied as moderate greening, and pixels with an in-

crease greater than one standard deviation above

the mean EVI trend (> 2.24 9 10–3 + SD per year)

were classified as high greening. Pixels with a sig-

nificant negative slope (decline in EVI over time)

were classified as browning. Since browning pixels

only accounted for 0.63% of pixels in the study

area, we did not consider this class as a category in

this analysis.

Random Forests Analysis and Variable
Importance

To identify the biophysical variables that best ex-

plain spatial variation in EVI trends, we used two

RF models (Breiman 2001). RF models are deci-

sion-tree based, ensemble machine-learning

methods involving the assembly of many regres-

sion or classification trees using a subset of avail-

able data to increase predictive capability (Breiman

2001; De’ath 2007). The RF method can also be

used to determine variable importance by mea-

suring the mean decrease in model accuracy upon

removal of a given variable (Cutler and others

2007). In our first analysis, we used a classification

RF to discriminate pixels showing a significant in-

crease in EVI (p < 0.05, positive slope) from un-

trended pixels (p > 0.05). In a second analysis, we

used a regression RF to model the magnitude of the

change in EVI (Theil-Sen regression slope) of pixels

exhibiting significant increases in EVI (p < 0.05,

positive slope) using the same suite of biophysical

variables. We created both models using the ran-

domForests package (Liaw and Wiener 2002) in R.

Explanatory variables used in each model are pre-

sented in Table 1. We ran the classification RF

model using a random selection of 40,000 pixels of

each class to ensure balanced sampling. For the

regression RF, we used a random sample of 1%

(66,442 pixels) of all pixels in the study area. We

ran each model using 1000 trees and calculated the

variable importance using the importance function

(Liaw and Wiener 2002). We assessed the influence

of the four variables that had the largest impact on

model accuracy using partial dependence plots

showing the marginal effect of a given variable on

the modelled parameter while keeping all other

variables constant (Friedman 2001; Hastie and

others 2009). For the classification RF, our partial

dependence plots show the probability of signifi-

cant greening. The partial dependence plots for a

regression RF show the predicted magnitude of the

slope in the EVI trend.

Explanatory Variables

Broad-scale biophysical data used in this study

were obtained from a variety of sources and data

processing and aggregation were completed using

the R statistical software (Table 1; R Core Team

2019). We selected explanatory variables known to

effect growth and productivity but were not able to

directly assess the influence of microclimate be-

cause suitable data are not available to adequately

capture climate variability at such fine scales. A

digital elevation model (DEM), with 2-m spatial

resolution (Figure 1c), was sourced from the Polar

Table 1. Explanatory Variables Used in Random Forests Modelling

Explanatory variables Units Resolution Source

Elevation metres 2 m PGC ArcticDEM (Porter and others 2018)

Slope degrees 2 m PGC ArcticDEM derivative

Topographic Wetness index 2 m PGC ArcticDEM derivative

Topographic Position index 2 m PGC ArcticDEM derivative

Terrain Ruggedness index 2 m PGC ArcticDEM derivative

Solar Insolation index 2 m PGC ArcticDEM derivative

Land Cover (1984) category 30 m NASA ABoVE (Wang and others 2019)

Surficial Geology category 20 m* Fulton 1989

*20 m resolution corresponds to the smallest size polygon (approximately 20 m2) in the original source data.

Biophysical drivers of Arctic tundra greening



Geospatial Center’s (PGC) ArcticDEM dataset

(Porter and others 2018). We calculated slope, as-

pect, and terrain ruggedness index (TRI) from this

DEM using the terrain function from the raster

package (Hijmans 2020). TRI is the absolute dif-

ference between the elevation of a given cell and its

surrounding neighbours (Riley and others 1999).

The topographic wetness index (TWI) is a DEM-

driven index of soil moisture in which potential soil

moisture availability is calculated based on the

slope and flow directions of the surrounding land-

scape (Kopecký and Čı́žková 2010). Flat areas sur-

rounded by upslope terrain will have higher TWI

values (as moisture will tend to accumulate in

these areas) compared to steep sloping cells that

will have lower values (as moisture will tend to run

off). TWI was calculated using the upslope.area

function from the dynatopmodel package (Metcalfe

and others 2018). Topographic position index (TPI)

is another DEM-driven index that defines the rel-

ative elevation of a cell based on the mean eleva-

tion of surrounding cells (De Reu and others 2013).

Where TPI is positive, the cell has a higher eleva-

tion than the mean of the surrounding cells. A

negative TPI indicates that the cell has a lower

elevation than the mean of the surrounding cells.

TPI was calculated using the tpi function in the

spatialEco package (Evans 2020). We calculated

solar insolation using the equation provided by

Roberts and Cooper (1989):

solar insolation ¼ 1 � cos aspect � 30ð Þ
2

ð2Þ

This index of solar insolation ranges from 0 to 1,

with north-northeast facing aspects taking on val-

ues close to zero, and south-southwest aspects

having values closer to 1. Data on land cover were

obtained from the classification created by Wang

and others (2019). This land cover classification

includes 15 terrain types derived from a RF classi-

fication model for Landsat surface-reflectance at

30-m resolution using high-resolution field photos

and imagery from the NASA ABoVE project to as-

sign land cover classes for each year between 1984

and 2014 (Wang and others 2019). We used land

cover data from 1984 as a predictor in the RF

models to test the sensitivity of different vegetation

classes to shifts in productivity. The average overall

accuracy for these land cover data is 84.1 ± 4.1%

(mean and 95% confidence interval across all years

of the time series; Wang and others 2019). Surficial

geology data were obtained from Fulton (1989),

cropped to the extent of the study area and ras-

terized for further analysis (Figure 1b). We masked

out any cells of the land cover and geology layers

that were occupied by classes representing less than

1% of the study area (class descriptions can be

found in Supplementary Tables 1 and 2). Spatial

resolution of the data sources described above was

matched to the EVI trend data (30 m). Where res-

olution of a dataset was finer than 30 m, cells were

aggregated by taking the mean of sub-pixels. We

resampled continuous data using a bilinear inter-

polation method while categorical data used the

nearest neighbour method. These operations were

performed with the resample function from the

raster package (Hijmans 2020). Surficial geology

and elevation data are shown in Figure 1b and c ,

and all other explanatory variables can be found in

Supplementary Fig. 2.

Field Surveys

To assess the influence of biophysical variables on

recent changes in tundra productivity, we mea-

sured biotic and abiotic variables at sites across the

study area. Field sites were selected by randomly

choosing 40 points in each of the productivity

classes defined using the EVI trend (moderate

greening, high greening, and stability). Random-

ization was constrained such that the pixel (30 m2)

containing the selected point was surrounded by

the same greening class. We visited 21 stable sites,

32 moderate greening sites, and 26 high greening

sites in July and August of 2019 (Figure 1a). At

each site, we measured a suite of biotic and abiotic

variables, as described below.

Vegetation surveys and soil sampling were con-

ducted along two 30-m transects. Transects were

orientated in north–south and east–west directions

such that the 15-m mark on both transects was

centered on the predetermined site coordinate.

These dimensions were selected to create a plot

corresponding to the 30-m resolution of one

Landsat pixel. Thaw depth and soil moisture were

measured at 5-m intervals along each transect as

well as inside all vegetation quadrats at a site. We

measured soil moisture at 3–5 cm below the sur-

face using a handheld moisture probe (Delta-T

Devices HH2 Moisture Meter with ML3 ThetaProbe

Soil Moisture Sensor). Thaw depth was measured

using a graduated metal probe inserted into the

ground until the depth of refusal. We visually

estimated the percent cover of plant species or

species groups inside nested 5 m2 and 1 m2 quad-

rats at four locations at every site. We positioned

quadrats using a random point located inside each

of the four quadrants of the cross transect (north-

west, northeast, southwest, and southeast). We

estimated the cover of upright shrubs and trees
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using the larger quadrat and the cover of dwarf

shrubs, graminoids, herbaceous species, lichens,

and bryophytes using the smaller quadrat.

When vegetation cover estimates were com-

pleted, we collected a composite active layer soil

sample from within each quadrat using a small

shovel. The profile exposed during sample collec-

tion was also used to estimate the thickness of the

moss layer and organic soil horizon. Soil samples

were stored at -20 �C before they were submitted

for analysis of gravimetric soil moisture, macronu-

trients including nitrogen and phosphorus, and

micronutrients including magnesium, sulphur and

calcium. Chemical analyses were carried out using

an inductively coupled plasma mass spectrometer

(ICP-MS) at the Chemical Services Laboratory at

the Pacific Forestry Centre of the Canadian Forest

Service in Victoria, British Columbia.

Vegetation Community
and Environmental Data Analysis

To explore differences in community composition

among sites exhibiting different levels of landscape

scale greening, we used non-metric multidimen-

sional scaling (NMDS) ordination. We applied a

log(x + 1) transformation to the raw vegetation

percent cover data and ran the NMDS using a

Bray–Curtis dissimilarity matrix of the transformed

percent cover data. This analysis was set to repeat

100 times and select the best two-dimensional

representation of the original data. The NMDS was

performed using the metaMDS function from the

vegan package (Oksanen and others 2019) in R. We

used the analysis of similarities (ANOSIM; Clarke

1993) function (anosim) from vegan (Oksanen and

others 2019) to test for statistically significant dif-

ferences in vegetation community composition

among the three sites types (stable, moderate

greening, and high greening). To identify the spe-

cies making the greatest contribution to differences

among site types, a similarity percentage (SIMPER)

analysis was conducted using the simper function in

the vegan package (Oksanen and others 2019). We

also compared the cover of vegetation classes in

1984 and 2014 using the multiyear land cover

classification presented in Wang and others (2019).

Specifically, we calculated the percent cover of land

cover classes in 1984 and 2014 and compared the

differences across the entire study area and be-

tween the Yukon North Slope and Tuktoyaktuk

Coastlands.

RESULTS

Study Area Response Overview

Approximately 70% of the study area showed sig-

nificant increases in EVI between 1984 and 2016

(Figure 2, Table 2). Split across the study area, 71%

of the Tuktoyaktuk Coastlands showed significant

greening compared to 66% of the Yukon North

Slope (Table 2). The Tuktoyaktuk Coastlands also

had a higher average EVI trend than the Yukon

North Slope but was similar to the average across

the entire study area (Table 2).

Classification Random Forests Analysis

The top four predictors in the classification RF were

surficial geology, elevation, land cover in 1984, and

TWI (Figure 3). This model had user’s accuracy of

72.05% and was capable of classifying pixels as

stable and greening with user’s accuracy of 73.5%

and 70.6%, respectively. The area under the curve

(AUC) of the receiver operating characteristic

(ROC) is 0.796 (see Supplementary Fig. 3).

Partial dependence plots for surficial geology

show that till blanket, glaciofluvial complex,

glaciofluvial plain, and lacustrine sand were more

likely to exhibit greening than colluvial and alluvial

materials, which had a greater probability of being

stable (Figure 4a). The partial dependence plot for

elevation shows that the greatest probability of

greening occurred at elevations between 0 to 60 m

(Figure 4b). Elevations above approximately 60 m

had a higher probability of being stable. This anal-

ysis also showed that significant greening was most

likely in low shrub, tussock tundra, and sparsely

vegetated land cover classes, while tall shrub, fen,

and barren cover classes were more likely to be

stable (Figure 4c). With respect to topographic

variables, the partial dependence plot for topo-

graphic wetness (TWI) indicates an increased

probability of greening at moderate landscape

wetness (Figure 4d). Values of TWI greater than 7.5

are largely associated with the margins of ponds

and lakes as well as coastal tundra areas on the

Tuktoyaktuk Peninsula.

Regression Random Forests Analysis

The four most important variables in the regression

RF, which predicted the magnitude of greening,

were surficial geology, elevation, and land cover,

and TWI followed by a suite of variables related to

topography (Figure 5). This model explained

Biophysical drivers of Arctic tundra greening



20.41% of the variance in EVI trend based on the

out-of-bag data.

The partial dependence plots for the regression

RF show that lacustrine sands, till blanket, and

glaciofluvial complex cover are associated with

more rapid greening (Figure 6a). Areas underlain

by fine colluvium and till veneer had rates of EVI

change lower than the average value (3.07 9 10–3

per year) for significantly trended pixels (Fig-

ure 6a). Areas covered by till blanket comprised

roughly 46% of the entire study area, of which,

over 51% are significantly greening (Table 3). The

partial dependence plot for elevation shows that

greening was most rapid at lower elevations (Fig-

ure 6b). At elevations above 50 m, the calculated

mean EVI trend was below the average EVI trend of

significantly greening pixels (red dashed line; Fig-

ure 6b). Tussock tundra, low shrub, and sparsely

Table 2. Greening Responses Across the Study Area

Region Area (km2) Percent of region greening (%) Mean EVI trend in region (per year)

Entire Study Area 34,627 70.2 2.239 9 10–3

Tuktoyaktuk Coastlands 29,184 71.1 2.274 9 10–3

Yukon North Slope 5443 66.2 2.097 9 10–3

Figure 2. Raw EVI trends (from Chen and others 2021) where un-trended and browning pixels are grey and brown,

respectively. The inset at the top left shows the extent of the main map in the context of northwestern Canada and Alaska,

USA.

Figure 3. Variable importance in the classification

random forest (predicting probability of significant

greening) measured as the mean decrease in model

accuracy scaled by the standard error of the change in

model accuracy.
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vegetated land cover classes exhibited the greatest

predicted EVI trends (Figure 6c). The mean EVI

trends across low shrub and tussock tundra classes

were greater than the average EVI trend of signif-

icantly greening pixels (Table 4). The predicted EVI

trend as a function of TWI decreased with higher

index values, dropping below the average mean

EVI trend of significantly greening pixels at

approximately TWI of 8 (Figure 6d).

Vegetation Community Analysis

The NMDS ordination shows that heterogeneity in

plant community composition was higher in the

Tuktoyaktuk Coastlands compared to the Yukon

North Slope. Moderate and high greening sites

sampled in the Yukon had community composition

that was largely indistinguishable from stable sites

(RANOSIM = 0.039, PANOSIM < 0.05), whereas the

Tuktoyaktuk Coastlands exhibited greater differ-

entiation between sites with moderate and high

greening (RANOSIM = 0.27, PANOSIM = 0.001; Fig-

ure 7).

In the Tuktoyaktuk Coastlands, stable and high

greening sites exhibited significant differences in

community composition (RANOSIM = 0.27). This

difference was driven largely by greater abundance

of Ledum decumbens, Betula spp. and Vaccinium vitis-

idaea at high greening sites (Table 5). Conversely,

we observed greater cover of lichens, V. uliginosum,

Arctostaphylus spp., and Salix spp. at stable sites (Ta-

ble 5).

Table 3. Summary of Enhanced Vegetation Index (EVI) Trends (per year) by Surficial Geology Class in
Order of Proportional Cover of Study Area (Fulton 1989)

Class Mean EVI trend

of significantly

greening pixels

Standard deviation

of EVI trend in

significantly

greening pixels

Proportion

of study

area (%)

Proportion of

class that is

significantly

greening (%)

Till Blanket 3.24 9 10–3 1.13 9 10–3 46.54 51.58

Glaciofluvial Plain 2.80 9 10–3 1.13 9 10–3 16.66 16.71

Fine Colluvial 2.58 9 10–3 1.29 9 10–3 11.75 7.74

Till Veneer 2.55 9 10–3 9.79 9 10–4 8.49 7.39

Lacustrine Sand 3.46 9 10–3 1.15 9 10–3 5.84 6.15

Glaciofluvial Complex 3.18 9 10–3 1.05 9 10–3 5.54 6.31

Alluvial 3.00 9 10–3 1.62 9 10–3 3.66 3.21

All Classes 3.07 3 10--3 1.19 3 10--3 - -

The last column shows the proportion within each class that exhibited significant greening.

Table 4. Summary of Enhanced Vegetation Index (EVI) Trends (per year) by Land Cover Class in Order of
Proportional Cover of Study Area (Wang and others 2019)

Class Mean EVI trend of

significantly greening

pixels

Standard deviation of EVI

Trend in significantly

greening pixels

Proportion of

study area

(%)

Proportion of class that

is significantly

greening (%)

Herbaceous 3.00 9 10–3 1.14 9 10–3 29.08 27.66

Low Shrub 3.24 9 10–3 1.06 9 10–3 26.33 28.92

Sparsely Vegetated 2.94 9 10–3 1.24 9 10–3 13.89 14.34

Tall Shrub 2.95 9 10–3 1.26 9 10–3 13.13 11.80

Tussock Tundra 3.21 9 10–3 1.02 9 10–3 11.68 13.30

Barren 2.27 9 10–3 2.44 9 10–3 2.20 1.13

Woodland 2.91 9 10–3 1.53 9 10–3 1.49 1.27

Fen 2.75 9 10–3 1.29 9 10–3 1.48 1.37

All Classes 3.07 3 10--3 1.19 3 10--3 – –

The last column shows the proportion within each class that exhibited significant greening.
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Analysis of data from Wang and others (2019)

indicates that sparse and herbaceous cover de-

creased by 7.5% and 6.2% across the entire study

area between 1985 and 2014. These data also show

that low shrub and tall shrub cover increased by 4.8

and 6.0% over this period (Figure 8). The pattern

of vegetation change was similar in both regions,

but the magnitude of increases in shrub-dominant

terrain were higher in the Tuktoyaktuk than the

Yukon North Slope. The decline in herbaceous

cover was also greater in the Tuktoyaktuk Coast-

lands compared to the Yukon North Slope (Fig-

ure 8).

DISCUSSION

Landscape-scale variation in surficial materials,

topography, and vegetation structure were good

predictors of changing tundra productivity because

these factors influence access to both moisture and

soil nutrients. Surficial materials govern the

development of tundra soils and control nutrient

and moisture availability. Parent materials impact

soil formation through differential weathering and

the mineral and chemical composition of the sub-

strate (Brady and Weil 1996; Walker 2000). Poorly

sorted materials such as till veneer are often asso-

ciated with exposed bedrock and are found at

higher elevations in the foothills of the Richardson

Mountains and on the Anderson Plain (Fulton

1989). These thin tills contain larger gravel and

boulders and result in shallow, poorly developed

soils that are unable to retain moisture and nutri-

ents (Brady and Weil 1996). Till veneer was asso-

ciated with stable vegetation in our study area,

while the deeper soils that typically develop in

areas of till blanket or glaciofluvial complexes were

associated with greening (Figure 4a) and had

higher EVI trend values than the average across the

study area (Table 3). Finer-grained soils at lower

elevation have a larger surface area, are less sus-

ceptible to leaching, and are able retain more

nutrients for plant uptake (Walker and Everett

1991; Brady and Weil 1996).

The importance of elevation in our RF models

indicates that microclimatic variation associated

with landscape position also impacts tundra vege-

Figure 4. Partial dependence plots for top four variables

in order of importance from classification random forest:

a Quaternary surficial geology (Fulton 1989), b elevation

in metres (Porter and others 2018), c land cover in 1984

(Wang and others 2019), and (D) topographic wetness

index. The dashed line on the y-axis in plots B and D

indicates the point at which elevation (beyond � 50 m)

and wetness (lower than � 5 and greater than � 8) do

not impact greening probabilities and are presented with

decile rug marks of training data.

Figure 5. Variable importance in the regression random

forest (predicting trends in enhanced vegetation index)

measured as the percent increase in mean square error

scaled by standard error of the change in accuracy.
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tation productivity. Our observation that lower

rates of greening and a reduced probability of

greening were associated with higher elevations

suggests that cold temperatures, dry soils, and re-

duced snowpack on hilltops limit the effects of

increasing regional temperatures on tundra pro-

ductivity. Soils at higher elevation also tend to have

more unconsolidated sediments and exposed bed-

rock, which likely limit productivity because of

reduced moisture and nutrients.

Differences in relative elevation drive variation

in soil moisture that likely influence vegetation

community development and productivity. Previ-

ous research shows that landscape scale variation

in temperature, soil moisture and snow accumu-

lation can impact the establishment and growth of

tundra plants (Sturm and others 2001; Myers-

Smith and others 2011; Niittynen and others

2020a; Niittynen and others 2020b). Our NMDS

analysis also showed an association between ele-

vated soil moisture and plant community compo-

sition at moderate and high greening sites

(Figure 7). A number of recent studies have

demonstrated that soil moisture influences tundra

vegetation growth (Myers-Smith and others 2015;

Cameron and Lantz 2016; Ackerman and others

2017; Bjorkman and others 2018) and indices of

vegetation productivity (Campbell and others

2021; Chen and others 2021). Topographic varia-

tion in microclimate and soil moisture have also

been shown to be better predictors of tundra

greening at fine scales than broader-scale climate-

related factors such as the total length of growing

season (Gamon and others 2013). Soil moisture

levels influenced by microclimate can drive in-

creased nutrient mineralization and are likely an

important mechanism of increased productivity

(Chapin and others 1988; Deslippe and Simard

2011; Deslippe and others 2012; Mekonnen and

others 2021). More rapid greening associated with

moderate levels of topographic wetness indicate

that tundra vegetation on mesic to moist soils is

most sensitive to regional warming. This is likely

because moderate soil moisture limits the negative

effects of temperature-induced moisture stress on

tundra growth and productivity (Johnson and

Caldwell 1975; Dagg and Lafleur 2011; Myers-

Smith and others 2015; Ackerman and others

2017). Snowmelt associated with the onset of

spring can also increase soil moisture in areas of

large drifts, contributing to an influx of moisture to

tundra soils. Gamon and others (2013) found that

earlier snowmelt was associated with drier soils and

lower mid-season NDVI which highlights the

complex interaction between moisture availability

and growing season. Winter conditions (notably

snow cover) are also important to consider since

winter is a crucial period in the development of

vegetation communities and their functional

diversity (Niittynen and others 2020a; Niittynen

and others 2020b).

Vegetation type was a good predictor of EVI

trends because some functional groups, such as

Figure 6. Partial dependence plots for the top four

variables used in the regression random forest

predicting EVI trend (per year): a Quaternary surficial

geology (Fulton 1989), b elevation in metres (Porter and

others 2018), c land cover in 1984 (Wang and others

2019) and d topographic wetness index. Note differing y-

axis ranges among plots A-D. The dashed line on the y-

axis in plots B and D highlights the mean EVI trend value

for significantly greening pixels (3.07 9 10–3 per year).

Plots B and D are presented with decile rug marks of

training data.
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shrubs and graminoids, are more responsive to

changes in temperature and soil conditions.

Specifically, many species of deciduous shrub are

adapted to respond to changes in nutrients avail-

ability, the length of the growing season, and

moisture availability at the onset of spring (Chapin

and others 1995; Hobbie and Chapin 1998; Bret-

Harte and others 2001; Myers-Smith and others

2011; Kelsey and others 2020). Increased produc-

tivity in shrub tundra communities was likely also

driven by the ability of deciduous shrubs to rapidly

allocate resources to secondary growth and asexual

reproduction (Bret-Harte and others 2001; Wied-

mer and Senn-Irlet 2006; Ropars and Boudreau

Figure 7. Non-metric multidimensional scaling (NMDS) ordination of vegetation community composition across the a

Yukon North Slope (stress = 0.15) and b Tuktoyaktuk Coastlands (stress = 0.13). Sites split by classification with stable,

moderate greening, and high greening shown as blue, green, and red points and polygons, respectively with abiotic vectors

(p < 0.1) overlaid. The ordinations also plot associations between species and functional type (lichen) to cumulative

contribution of 65% and NMDS score. Species abbreviations are defined in Table 5.
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2012). Taller, shrub dominated vegetation may also

increase soil moisture and nutrient availability via

increased snow capture (Sturm and others 2001;

Wipf and Rixen 2010; Leffler and others 2016;

Niittynen and others 2020a). Observed increases in

the productivity of tussock tundra may be related

to variability of substrate properties including grain

size and soil chemistry that are predicted to favour

development of moist-acidic tundra with climate

warming (Walker and others 1998; Epstein and

Table 5. Results of the SIMPER Analysis Showing the Contribution of Species and Species Groups to
Dissimilarly Among Site Types Across the Tuktoyaktuk Coastlands

Species NMDS code Percent cover Contribution to

dissimilarity (%)

Cumulative

contribution (%)
High greening Stable

Vaccinium uliginosum VACULI 0.31 9.80 8.99 8.99

Ledum decumbens LEDDEC 23.53 3.71 7.12 16.11

Rubus chamaemorus RUBCHA 4.81 0.16 7.06 23.17

Betula spp. BETULA 18.49 3.18 6.93 30.09

Salix spp. SALIX 2.74 5.42 5.9 35.99

Arctostaphylos spp. ARCTO 1.61 6.61 5.79 41.79

Vaccinium vitis-idaea VACVIT 23.05 6.17 5.4 47.19

Alnus crispa ALNUS 2.19 0.39 5.1 52.29

Lichens - 6.46 15.44 4.98 57.27

Dryas spp. DRYAS 0.00 2.16 4.76 62.03

Equisetum spp. - 0.02 2.13 4.62 66.65

Petasites frigidus - 3.14 0.92 4.5 71.15

Graminoids - 10.47 13.30 3.64 74.79

Empetrum nigrum - 11.55 7.67 3.3 78.09

Bryophytes - 16.12 13.44 3.26 81.36

The table shows the species and species groups accounting for 80% of the total dissimilarity and is ranked by the contribution to dissimilarity. The site type showing higher cover
for a given species is shown in bold. The NMDS Code column lists the abbreviations used in Figure 7. This analysis was not completed for the Yukon North Slope because there
were no differences in community composition among sites.

Figure 8. Changes in the area of selected land cover classes between 1984 and 2014 across the Yukon North Slope (green),

Tuktoyaktuk Coastlands (blue), and both regions combined (red) measured using supervised classifications from Wang

and others (2019).
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others 2004a; Epstein and others 2012). The tus-

sock growth form of species such as Eriophorum

vaginatum is also highly conducive to growth in

nutrient poor environments through nutrient cy-

cling within tussocks (Cholewa and Griffith 2004)

and growth of deeper roots (Chapin and others

1988). Our results are also consistent with a

number of studies linking tundra greening with

productive cover types (Jia and others 2006;

McManus and others 2012; Frost and others 2014;

Campbell and others 2021; Chen and others 2021)

and shrub proliferation in the low Arctic in par-

ticular (Tape and others 2006; Ropars and Bou-

dreau 2012; Lantz and others 2013; Frost and

others 2014; Moffat and others 2016). Our com-

parisons of land cover over time also show that the

proportion of shrub and tussock tundra have in-

creased since 1984 in our study regions. Higher

cover of shrubby vegetation types in the Tuktoy-

aktuk Coastlands likely drove differences in the

extent and distribution of greening between re-

gions. Past research in this region has also shown

an association between gains in shrub and herba-

ceous cover and increases in NDVI (Wang and

Friedl 2019). The Yukon North Slope has experi-

enced less of a transition to shrub tundra than the

Tuktoyaktuk Coastlands (Figure 8) with greater

overall similarity in community composition across

the region (Figure 7) and we attribute the differ-

ence in the extent of observed greening between

these two regions (Table 2) to differences in the

intensity of shrub proliferation.

Average annual and summer temperatures

across the Beaufort Delta region have increased by

3.5�C and 1.9�C, respectively, between 1926 and

2019 (Travers-Smith and Lantz 2020) with largely

homogenous warming across the region (Vincent

and others 2015). Widespread increases in tundra

productivity are likely a response to the direct and

indirect effects of this warming. Productivity re-

sponses to warming are well documented, but

environmental limitations also drive differences in

the response of vegetation across the Arctic

(Walker and others 2006; Hudson and Henry 2009;

Elmendorf and others 2012; Myers-Smith and

others 2015). NDVI trends across the Arctic Coastal

Plain of Alaska also show complex responses to

changes in temperature and precipitation across

terrain types, suggesting that climatic drivers are

mediated by regional environmental factors (Lara

and others 2018). Underlying climate drivers,

landscape and regional variability in soils and

topography are key determinants of spatial

heterogeneity in vegetation responses (Raynolds

and others 2008; McManus and others 2012; Lara

and others 2018). This conclusion is consistent with

recent studies on spatial patterns of productivity

trends across northwestern North America (Chen

and others 2021) and on Banks Island (Campbell

and others 2021), and complements previous re-

search highlighting terrain variability driving these

regional patterns (Jia and others 2006; Tape and

others 2006; Walker and others 2009; McManus

and others 2012; Tape and others 2012; Berner and

others 2020; Niittynen and others 2020a). Our re-

sults using EVI trends to map tundra greening are

comparable to those of studies using NDVI re-

sponses; suggesting similar spatial patterns of

greening (Myers-Smith and others 2020) and

mechanisms driving vegetation change (Jia and

others 2006; Raynolds and others 2008; McManus

and others 2012). Further, EVI uses additional

spectral and angular information not used by NDVI,

implemented to address known issues with NDVI

related to solar incidence and atmospheric condi-

tions present (Liu and Huete 1995).

Although some researchers recommend

accounting for temporal autocorrelation in time

series through pre-whitening methods (Guay and

others 2014; Berner and others 2020), we do not

believe that this is an issue in our analyses given

the temporal revisit rate of the data used and the

rates of phenological development present in tun-

dra ecosystems. Weak evidence of temporal auto-

correlation of NDVI has also been documented in

areas dominated by deciduous vegetation com-

pared to evergreen vegetation due to seasonal fo-

liage replacement and other differences in reliance

on previous-year nutrient storage (Berner and

others 2011). Additionally, our methods are con-

sistent with other studies using vegetation index

time series that do not implement pre-whitening

procedures (Fraser and others 2014b; Nitze and

Grosse 2016; Raynolds and Walker 2016; Lara and

others 2018).

The Tuktoyaktuk Coastlands and Yukon North

Slope provide habitat to a diversity of mammals

including caribou, muskox, bears, wolves, Dall’s

sheep, red fox, and wolverine (Russell and others

1993; YEWG 2004; Rickbeil and others 2018). Our

observation that tussock and dwarf shrub tundra at

lower elevations are most prone to increased veg-

etation productivity suggest that caribou who uti-

lize this habitat type while avoiding upright shrub

tundra (Russell and others 1993; Johnstone and

others 2002; Rickbeil and others 2018) will be sig-

nificantly impacted by ongoing vegetation change.

The impacts of vegetation change on habitat use in

this region should be assessed by combining land-

scape-scale data on vegetation change with satellite

J. H. Seider and others



telemetry data for caribou and other important

species (see: Rickbeil and others 2018). Range

expansion of moose (Tape and others 2016) and

beavers (Jung and others 2016) may also be related

to vegetation change and should be explored using

systematic surveys and satellite telemetry.

Several recent analyses suggest that coarse reso-

lution imagery can mute the complexities of finer-

scale ecological patterns resulting in disagreement

among coarse-scale remote sensing platforms

(Guay and others 2014; Berner and others 2020;

Myers-Smith and others 2020). Our findings show

that landscape scale variation in biophysical char-

acteristics strongly influences vegetation dynamics

evident in moderate-resolution (30 m) Landsat

imagery. Because tundra ecosystems exhibit

heterogeneity at scales of 1–2 m (Epstein and oth-

ers 2004b; Lantz and others 2010; Assmann and

others 2020; Myers-Smith and others 2020), it is

possible that change detection using higher-reso-

lution sensors (such as 0.5 – 3 m resolution ima-

gery from WorldView, QuickBird, and

PlanetScope) could account for some of the unex-

plained variation in our models. We suggest that

future research utilize high-resolution sensors cal-

ibrated to temporally contemporaneous Landsat

(Markham and Helder 2012; Belward and Skøien

2015) or Sentinel-2 (Drusch and others 2012)

imagery. This integration of measurements from a

greater variety of remote sensing platforms and the

use of Sentinel-2 imagery cross-calibrated with

Landsat offers a compelling advance in remote

sensing capabilities (Wulder and others 2015;

Claverie and others 2018) to avail upon samples of

fine scale earth observations and improve models

or offer insights on the nature of local vegetation

heterogeneity.

Recent work using remotely piloted aircraft sys-

tems (RPAS; or drones) also emphasizes the influ-

ence of fine-scale variability in topography on the

composition and productivity of tundra plant

communities (Assmann and others 2020; Cunliffe

and others 2020; Myers-Smith and others 2020).

Increased affordability of RPAS systems has facili-

tated the collection of higher spatial resolution data

representing increasingly large areas and future

research can take advantage of these tools to

monitor changes at fine scales (Fraser and others

2016; Assmann and others 2020; Cunliffe and

others 2020). We encourage the use of RPAS sur-

veying under standardized flight and recording

protocols, such as through the High Latitude Drone

Ecology Network (HiLDEN; https://arcticdrones.org),

to address this gap in spatial data. These data can

help further explain the complex interactions be-

tween vegetation and environmental and climatic

influences across spatial scales while covering

greater area than is possible with ground surveys.

Vegetation indices derived from satellite imagery

(such as EVI or NDVI) may be influenced by factors

altering surface reflectance like standing water or

vegetative stress (Roy 1989; Ollinger 2011). Higher

resolution imagery will make it possible to assess

the influence of soil moisture, physiological stress,

and disease on vegetation indices.

CONCLUSIONS

Global climate change is driving rapid increases in

vegetation productivity across northern latitudes.

The spatial heterogeneity in productivity trends

highlighted in this study is the result of finer-scale,

landscape processes that mediate the effects of re-

gional climate warming. Surficial geology and

topography are among the best predictors of spatial

pattern in tundra greening because they influence

soil conditions and moisture. Vegetation type also

strongly influences changes in productivity because

deciduous shrubs can respond rapidly to changes in

moisture, nutrients, and temperature. Tundra

vegetation change will impact wildlife habitat

(Rickbeil and others 2018), surface energy balance,

and carbon storage (McGuire and others 2006;

Schaefer and others 2014) and understanding the

drivers of landscape scale variation in vegetation

shifts is critical to accurately characterize these

relationships. We encourage continued research

using random forests modelling to identify the role

of regional processes as they relate to broader

environmental change across spatial and temporal

scales.
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